

## INTREPID ALLIANCE

LEE RUGGIERO

#### APRIL 30, 2025

Antiviral Clinical and Preclinical Development Landscape – 4<sup>th</sup> Edition

JIM DEMAREST RANDALL LANIER RICHARD MACKMAN

JOHN C. POTTAGE, JR.

INTREPID Alliance. Antiviral Clinical and Preclinical Development Landscape – 4<sup>th</sup> Edition. 30 APRIL 2025. Available at <u>intrepidalliance.org</u>.

## Disclaimer

The INTREPID Alliance is a not-for-profit consortium of innovative biopharmaceutical companies committed to accelerating antiviral research, aiming to ensure that we have a stronger pipeline and are better prepared for future pandemics.

As part of our efforts, the INTREPID Alliance maintains and publishes a centralized list of promising investigational candidate compounds, with the purpose of knowledge-sharing and to support better pandemic preparedness. These compounds have been selected based on objective, scientific criteria, using publicly available sources, and at arm's length from commercial influence of our member companies. See criteria listed in the report "Antiviral Clinical Development Landscape and Promising Clinical Compounds." The designation of certain compounds as promising is based upon currently available information, and exclusively upon an assessment against these criteria. "Promising" is not a promotional claim. Candidate compounds have not been assessed by regulatory authorities to be safe and efficacious for the treatment of disease in humans. Our content is designed to be factual, informative, and non-commercial. It is not designed or intended to advertise or promote any pharmaceutical product or therapy or to advance the commercial interests of any company.



## Table of Contents

About the Antiviral Development Landscape ►

Clinical Antiviral Development Landscape as of December 2024

Preclinical Antiviral Development Landscape as of December 2024

Supplemental Information ►

Glossary of Terms ►

How to Engage with INTREPID Alliance ►





## About the INTREPID Alliance Antiviral Development Landscape



#### **INTREPID Alliance Antiviral Landscape: Our Approach**

#### INTREPID Alliance Landscaping Activities

- Highlight strengths and weaknesses of the antiviral drug development pipeline for potential pandemic viral pathogens
- Support the <u>100 Days Mission</u> (100DM) which seeks to identify two 'Phase 2 ready' therapeutic candidates against each of the identified viral pathogen families of greatest pandemic potential

#### Landscape Analysis

- A living analysis of the antiviral landscape that will be updated based on emerging data
- Derived from Airfinity database information on diverse compounds against 13 viral families (see slide 7)
- Focused on direct-acting small molecule antivirals

#### • Timing and Publication on Website

- 1<sup>st</sup> Edition: Initial triage and selection of clinical compounds with favorable properties and antiviral mechanism of action January 2024
- 2<sup>nd</sup> Edition: Detailed review and identification of most Promising Clinical and Approved-Indication Expansion Compounds - April 2024
- 3<sup>rd</sup> Edition: Quarterly update for Clinical Development Landscape; initial Antiviral Preclinical Development Landscape release; Mpox Clinical and Preclinical Landscape - October 2024
- 4th Edition: Quarterly update for Clinical and Preclinical Antiviral Landscape April 2025
- Semi-Annual Updates Ongoing

#### Landscape Analysis Components\*

Airfinity monitors 13 viral families that pose the greatest risk of pandemic potential. With thanks to Airfinity for its contributions to the presentation.

#### **Baseline Information Identified:**

- Diverse Compound/Indications by Viral Family and Disease
- Phase of Development (e.g., Preclinical through Phase 4, Approved)
- MOA/Target
- Route of Administration
- Developer or Sponsor (Type, Location)
- Clinical Trials (Links, Status, Trial Site Locations)

#### Inclusion Criteria:

- Preclinical & Clinical
  - Known antiviral MOA
  - In vitro/In vivo activity
  - Small molecules
  - Peptides
  - RNA-based
- Clinical
  - SAD/MAD data ongoing or completed
  - FIH ongoing or completed
  - No major safety signals

#### Figures & Tables:

- 13 Viral Families of Interest for Pandemic Preparedness
- Total Pipeline by Viral Family
- Promising Clinical and Indication-Expansion Compounds
- Compounds by Viral Family and Phase of Development
- Compounds by MOA/Target and Viral Family
- Phase of development vs viral disease for each MOA
- Developer or Sponsor
- Preclinical compounds
- Emerging information is reviewed on a semi-annual basis.
- Antiviral Landscape updated on the INTREPID Alliance website on a semi-annual basis.

\*Now 13 viral families to align with updated World Health Organization (WHO) <u>Pathogens Prioritization</u> report from June 2024. MOA: mechanism of action; SAD/MAD: Single Ascending Dose/Multiple Ascending Dose; FIH: first-in-human.

### INTREPID Alliance Antiviral Landscape: Overview of 13 Priority Viral Families\*

As of December 18, 2024, for the 13 Viral Families with Greatest Risk of Pandemic Potential, Clinical Phase & Approved Antiviral Compounds Fall Into 9 of 13 and Preclinical Into 7 of 13 Viral Families

|                                                         | Primarily Respiratory Tra                                                          | nsmission                                          | Pri              | marily Contact/Vector-Med                                                                                                                       | iated Transmission           |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
|                                                         | Disease I                                                                          | ndication (n)**                                    |                  | Disease Indication (n)**                                                                                                                        |                              |  |  |
| Pillar                                                  | Preclinical (103)                                                                  | Clinical (39)                                      | Pillar           | Preclinical (22)                                                                                                                                | Clinical (13)                |  |  |
| Adenoviridae                                            | Х                                                                                  | • HuAdeno A-G (1)                                  | Arenaviridae     | • Junin virus (1)                                                                                                                               | • Lassa fever (3)            |  |  |
|                                                         | COVID-19 (74)     MERS CoV(5)                                                      |                                                    | Lassa fever (1)  | Lassa fever (1)                                                                                                                                 | Chapare hem. fever (1)       |  |  |
| Coronaviridae                                           | <ul> <li>MERS-CoV (5)</li> <li>SARS-CoV-1 (5)</li> <li>Seasonal CoV (1)</li> </ul> | • COVID-19 (25)                                    | Filoviridae      | Х                                                                                                                                               | • Ebola (2)                  |  |  |
| Orthomyxoviridae                                        | <ul> <li>Influenza (12)</li> </ul>                                                 | <ul> <li>Influenza (10)</li> </ul>                 | Flaviviridae     | <ul><li>Dengue (5)</li><li>West Nile (1)</li></ul>                                                                                              | • Dengue (3)                 |  |  |
| Paramyxoviridae                                         | <ul> <li>Hendra virus (1)</li> <li>Measles (1)</li> <li>Nipah virus (3)</li> </ul> | Х                                                  |                  | <ul><li>Yellow fever (1)</li><li>Zika (2)</li></ul>                                                                                             |                              |  |  |
|                                                         |                                                                                    |                                                    | Hantaviridae     | Х                                                                                                                                               | Х                            |  |  |
|                                                         | Parainfluenza (1)                                                                  |                                                    | Nairoviridae     | Disease In Preclinical (22)   Junin virus (1) Lassa fever (1)   Dengue (5) West Nile (1) Yellow fever (1) Zika (2)  X  Mpox (8) Chikungunya (3) | Crimean Congo hem. fever (2) |  |  |
| Picornaviridae                                          | Х                                                                                  | <ul><li>Polio (2)</li><li>Rhinovirus (1)</li></ul> | Peribunyaviridae | Х                                                                                                                                               | Х                            |  |  |
| <b>X</b>                                                |                                                                                    |                                                    | Poxviridae       | • Mpox (8)                                                                                                                                      | • Mpox (2)                   |  |  |
| X = absence of preclinical or clinical phase antivirals |                                                                                    | Togaviridae                                        | Chikungunya (3)  | Х                                                                                                                                               |                              |  |  |

\*As of December 18, 2024; \*\*Number of compounds in ongoing development.

© 2025. All Rights Reserved.



## Clinical Antiviral Development Landscape as of December 2024



#### INTREPID Alliance Clinical Antiviral Landscape: Clinical Antiviral Compounds Analysis Update (4<sup>th</sup> Edition)\*

- Clinical Landscape Analyses previously reported on the INTREPID Alliance website:
  - 1<sup>st</sup> edition (January 2024) with data through November 2023. Available <u>here</u>.
  - 2<sup>nd</sup> edition (April 2024) with data through March 2024. Available <u>here</u>.
  - 3<sup>rd</sup> edition (October 2024) with data through July 2024. Available <u>here</u>.
- This 4<sup>th</sup> Edition analysis of the data through December 2024 shows that there are 67 distinct antiviral compounds in the antiviral clinical development landscape.
  - 25 have prior regulatory approval and 42 are novel unapproved
- Data were organized based on stage of clinical development and regulatory approval:
  - Novel Unapproved Clinical Phase Antiviral Compounds (e.g., not yet approved for a virus disease indication)
  - Approved-Indication Expansion Antiviral Compounds (e.g., initial approval for one viral indication and under evaluation for other viral indication(s))
- Additional scientific analysis\*\* of only the novel compounds categorized them as follows:
  - Promising
  - Watch & Wait
  - Archived
  - Discontinued

\*As of December 18, 2024; \*\*See criteria and references on slides 10-11.



#### Criteria\* for Promising Clinical Antiviral Compounds Analysis\*\*

- FIH trial completed and data at adequate doses and dosing duration available.
- POC study ongoing *or* completed and data available.
  - POC demonstration via viral endpoint, symptom alleviation, etc.
  - POC in animal model may be applicable for certain viral diseases where clinical POC is not feasible.
- Adequate PK/PD to support Phase 2/3 dose selection and route of administration.
- Safety and tolerability consistent with the target dose/exposure and no difficult-to-manage clinical safety signals.
- Other criteria such as chemical structure, synthesis, scalability, etc., are taken into account where data are available.

\*In addition to the collective antiviral drug development experience of INTREPID Alliance member companies, guidance documents from Regulatory Authorities such as the U.S. FDA routinely used by drug developers, and publicly available Target Product Profiles such as the <u>NIH/NIAID Target Product Profiles for Antivirals</u>, were used to inform the clinical phase triage. \*\*As defined in 2<sup>nd</sup> and 3<sup>rd</sup> Editions of the Clinical Antiviral Landscape (available <u>here</u>); see disclaimer information on slide 2. FIH: first-in-human; POC: proof-of-concept; PK/PD: pharmacokinetic/pharmacodynamic.

#### **Categories for Clinical Antiviral Compound Analysis\***

- Promising (e.g., meets "Promising Criteria")
  - 100 Days Mission Ready
  - Registration & Approval for established viral diseases
- Watch & Wait
  - FIH or POC Study just starting/ongoing or data are unavailable for a completed study
  - Unable to make a data-driven evaluation
- Archived
  - Development paused, no recent information >5 years
  - May be useful to inform new screening or medicinal chemistry efforts

#### Discontinued

- Development stopped for known reasons; e.g., change in business strategy, lack of efficacy or funding, low enrollment, PK variability preventing effective dosing, other
- May be useful to inform new screening or medicinal chemistry efforts

\*As also defined in 2<sup>nd</sup> and 3<sup>rd</sup> Editions of the Clinical Antiviral Landscape (available <u>here</u>), with addition of "Discontinued" in the 4<sup>th</sup> Edition. FIH: first-in-human; POC: proof-of-concept; PK: pharmacokinetic.

### Changes in Clinical Antiviral Pipeline (4<sup>th</sup> Edition)\*

New Additions and Changes in Status from 3<sup>rd</sup> to 4<sup>th</sup> Edition

| Virus Family     | Indication  | Compound             | Discontinued | Archived | Preclinical<br>Exploratory | Phase 1 | Phase 2           | Phase 3     | Approved |
|------------------|-------------|----------------------|--------------|----------|----------------------------|---------|-------------------|-------------|----------|
| Adenoviridae     | Human Adeno | Brincidofovir (IV)   |              |          |                            |         | NEW AppAV-IE Prom |             |          |
|                  |             | Cidofovir            |              |          |                            |         |                   |             |          |
|                  |             | Valganciclovir       |              |          |                            |         |                   |             |          |
|                  |             | Brincidofovir (Oral) |              |          |                            |         |                   |             |          |
| Coronaviridae    | COVID-19    | Obeldesivir          |              |          |                            |         |                   | Prom        |          |
|                  |             | Bemnifosbuvir        |              |          |                            |         |                   | W&W         |          |
|                  |             | BIT225               |              |          |                            |         | W&W               |             |          |
|                  |             | WPV01/Ritonavir      |              |          |                            | W&W     |                   |             |          |
|                  |             | Valganciclovir       |              |          |                            |         |                   |             |          |
|                  | MERS-CoV    | Remdesivir           |              |          | NEW AppAV-IE               |         |                   |             |          |
|                  | SARS-CoV-1  | Remdesivir           |              |          | NEW AppAV-IE               |         |                   |             |          |
|                  |             | Galidesivir          |              |          |                            |         |                   |             |          |
| Orthomyxoviridae | Influenza   | CD388                |              |          |                            |         | W&W to Prom       |             |          |
|                  |             | TG-1000              |              |          |                            |         |                   | W&W to Prom |          |
|                  |             | ZX7101A              |              |          |                            |         |                   | W&W to Prom |          |
|                  |             | AL794                |              |          |                            |         |                   |             |          |
|                  |             | Flufirvitide-3       |              |          |                            |         |                   |             |          |
| Flaviviridae     | Dengue      | Zanamivir            |              |          |                            |         |                   |             |          |
|                  |             | Molnupiravir         |              |          |                            |         | NEW AppAV-IE W&W  |             |          |
|                  |             | Remdesivir           |              |          | NEW AppAV-IE               |         |                   |             |          |
|                  |             | Mosnodenvir          |              |          |                            |         | Prom              |             |          |
| Poxviridae       | Мрох        | Adefovir             |              |          | NEW AppAV-IE               |         |                   |             |          |

#### Summary of Updated Antiviral Clinical Development Landscape with Promising Clinical Compounds (4<sup>th</sup> Edition)\*

- Identified 67 distinct antiviral compounds with ongoing clinical phase activity
  - 22 Approved Compounds: 19 Approved for COVID-19 and/or Influenza; 3 for Smallpox/Other Poxviruses
    - **13** by Stringent Authority (S.A.)
    - 8 by Other National Authority (O.N.A.)
    - **1** by S.A. and O.N.A.
  - 3 Compounds approved for viral indications outside the 13 viral families
    - These are under evaluation as potential indication expansions within the **13** viral families
  - 42 Unapproved Compounds
- There are 103 indications associated with the 67 distinct antiviral compounds\*\*
  - **23** Approved indications for COVID-19 (n=8), Influenza (n=7), or both ( $n=4 \times 2$ )
  - **5** Approved indications for Smallpox (n=**3**), Cowpox (n=**1**), Mpox (n=**1**)
  - 28 other viral indications under evaluation for 10 of the distinct Approved antiviral compounds
  - 47 indications for Unapproved compounds; 2 compounds being evaluated for two indications and 1 for four indications
- Unapproved Promising and Watch & Wait clinical compounds target entry (n=11), protease (n=16), replication (n=9), and assembly-release (n=2).

\*As of December 18, 2024; \*\*Some compounds are being evaluated for more than one viral indication.

INTREPID ALLIANCE

#### Static View of Interactive Antiviral Clinical Development Pipeline: INTREPID Alliance Analysis (4<sup>th</sup> Edition)\*



\*As of December 18, 2024; WHO-defined Other National Authority (<u>https://www.who.int/publications/m/item/list-of-transitional-wlas</u>).



### Approved Antivirals: COVID-19, Influenza, Smallpox/Other Poxviruses\*



- 22 distinct antiviral compounds have received regulatory approval for COVID-19, Influenza, or Smallpox/Other Poxviruses
- 4 compounds are approved for COVID-19 and Influenza (favipiravir, triazavirin, umifenovir, and enisamium)
- 3 compounds have regulatory authorization by Animal Rule Development or similar mechanism
  - Tecoviramat is approved for Smallpox in U.S.
     & EU, and Cowpox and Mpox in EU only
  - Brincidofovir for Smallpox in U.S.
  - NIOCH-14 for Smallpox in Russia

\*As of December 18, 2024; WHO defined Other National Authority (https://www.who.int/publications/m/item/list-of-transitional-wlas).



### Antiviral-Indication Expansions: Preclinical & Clinical Compound/Indications (N=36)

Investigational: Antiviral compounds in clinical phase development for a different virus disease indication. Approved: Antiviral compounds approved for treatment of a different virus disease indication.



**6** of these antivirals (favipiravir, remdesivir, molnupiravir, amantadine, oseltamivir, & zanamivir) are approved for treatment of COVID-19 and/or Influenza.

- Adefovir is approved for treating Hepatitis B virus disease and cidofovir is approved for treating CMV disease.
- Tecovirimat is approved for treating smallpox.
- Favipiravir and remdesivir have the most indication expansions under evaluation (9 each).

\*As of December 18, 2024; Clinical phase Investigational (Unapproved) and Approved antivirals being explored for expanded indications.



#### All Clinical Phase & Approved Antivirals (N=75)

INTREPID Alliance Analysis (4<sup>th</sup> Edition)\*



\*December 18, 2024 data with "Promising" Analysis defined in March 2024.

## The Majority of Clinical Phase Antiviral Compound/Indications Are Targeting Coronaviruses and Orthomyxoviruses\*

# Clinical Phase Antiviral Compound/Indications by Virus Family (4<sup>th</sup> Edition, N=78)



\*As of December 18, 2024. Adenoviridae has 1 clinical phase program listed in Archived.

© 2025. All Rights Reserved.

## The Majority of Clinical Phase Antiviral Compound/Indications Are Targeting Coronaviruses and Orthomyxoviruses\*

# Clinical Phase Antiviral Compound/Indications by Virus Family (4th Edition, N=78)



Phase of Development (n)

### "Promising" Clinical Compounds Analysis (4<sup>th</sup> Edition)\*

Unapproved Compounds (Promising and Watch & Wait) by Virus Family (N=39)



#### "Promising" Compounds Analysis (4<sup>th</sup> Edition)\*

Novel Compound/Indications (Promising and Watch & Wait) by Phase of Development (N=39)



#### "Promising" Compounds Analysis (4th Edition)\*

Novel Compound/Indications (Promising and Watch & Wait) by MOA and Viral Family (N=39)



#### **Novel Clinical Antiviral Entry Inhibitors\***

Novel Compound/Indications (Promising, Watch & Wait (N=12))



#### **Novel Clinical Antiviral Protease Inhibitors\***

Novel Compound/Indications (Promising, Watch & Wait, Archived (N=16))



#### **Novel Clinical Antiviral Replication Inhibitors\***

Novel Compound/Indications (Promising, Watch & Wait (N=9))



\*As of December 18, 2024; Polymerase, Endonuclease, Replicase, DENV NS4B.

#### **Novel Clinical Antiviral Assembly-Release Inhibitors\***

Novel Compound/Indications (Promising, Watch & Wait, Archived (N=2))



#### Summary of Updated Antiviral Clinical Development Landscape with Promising Clinical Compounds (4<sup>th</sup> Edition)\*

- Identified 67 distinct antiviral compounds with ongoing clinical phase activity
  - 22 Approved Compounds: 19 Approved for COVID-19 and/or Influenza; 3 for Smallpox/Other Poxviruses
    - **13** by Stringent Authority (S.A.)
    - 8 by Other National Authority (O.N.A.)
    - **1** by S.A. and O.N.A.
  - 3 Compounds approved for viral indications outside the 13 viral families
    - These are under evaluation as potential indication expansions within the **13** viral families
  - 42 Unapproved Compounds
- There are 103 indications associated with the 67 distinct antiviral compounds\*\*
  - **23** Approved indications for COVID-19 (n=8), Influenza (n=7), or both ( $n=4 \times 2$ )
  - **5** Approved indications for Smallpox (n=**3**), Cowpox (n=**1**), Mpox (n=**1**)
  - 28 other viral indications under evaluation for 10 of the distinct Approved antiviral compounds
  - 47 indications for Unapproved compounds; 2 compounds being evaluated for two indications and 1 for four indications
- Unapproved Promising and Watch & Wait clinical compounds target entry (n=11), protease (n=16), replication (n=9), and assembly-release (n=2).

\*As of December 18, 2024; \*\*Some compounds are being evaluated for more than one viral indication.

INTREPID ALLIANCE



# Clinical Antiviral Sponsors and Developers



© 2025. All Rights Reserved.

#### **Clinical Antiviral Landscape: Sponsors & Developers\***

- The biopharmaceutical industry (both large and small companies) represents 67 (89.3%) of the global antiviral clinical developers (75).
  - Academia 7.3%
  - Government groups 2.4%
  - Contract Research Organizations (CRO) <1%</li>
- For the **39** Promising and Watch & Wait clinical compound/indications:
  - The countries most represented by developers/sponsors are the United States (46.6%) and China (36.8%).
     Others include:
    - Australia, Hong Kong, Japan, Russia, Switzerland, Taiwan, each at 2.6%
    - Belgium at 1.3%
  - The majority (63.2%) of developers/sponsors are located in countries with high-income economies.
    - The remainder are located in China which has an upper-middle income economy class.

\*As of December 18, 2024; Includes clinical compounds categorized as Approved/Investigational Antivirals-Indication Expansions, Promising, and Watch & Wait.



#### Clinical Antiviral Compound/Indications by Sponsor/Developer Type\*



\*As of December 18, 2024; Includes clinical compounds categorized as Approved/Investigational Antivirals-Indication Expansions, Promising, and Watch & Wait. CRO: contract research organization.



#### Clinical Antiviral Compound/Indications by Sponsor/Developer WHO-Region\* (N=75)



► The Americas and Western Pacific regions are primarily driven by the United States and China.

\*As of December 18, 2024; Includes clinical compounds categorized as Approved/Investigational Antivirals-Indication Expansions, Promising, and Watch & Wait.

#### Clinical Antiviral Compound/Indications\* by Country and World Bank Economy Class\*\* (N=75)



\*As of December 18, 2024; Includes clinical compounds categorized as Approved/Investigational Antivirals-Indication Expansions, Promising, and Watch & Wait. \*\*<u>World Bank country classifications by income level for 2024-2025</u>; LMI: lower-middle income; UMI: upper-middle income; HI: high-income.



# Preclinical Antiviral Development Landscape as of December 2024



## Disclaimer

The INTREPID Alliance is a not-for-profit consortium of innovative biopharmaceutical companies committed to accelerating antiviral research, aiming to ensure that we have a stronger pipeline and are better prepared for future pandemics.

As part of our efforts, the INTREPID Alliance maintains and publishes a centralized list of promising investigational candidate compounds, with the purpose of knowledge-sharing and to support better pandemic preparedness. These compounds have been selected based on objective, scientific criteria, using publicly available sources, and at arm's length from commercial influence of our member companies. See criteria listed in the report "Antiviral Clinical Development Landscape and Promising Clinical Compounds." The designation of certain compounds as promising is based upon currently available information, and exclusively upon an assessment against these criteria. "Promising" is not a promotional claim. Candidate compounds have not been assessed by regulatory authorities to be safe and efficacious for the treatment of disease in humans. Our content is designed to be factual, informative, and non-commercial. It is not designed or intended to advertise or promote any pharmaceutical product or therapy or to advance the commercial interests of any company.



#### **INTREPID Alliance Preclinical Triage and Classification**

- Preclinical compounds in Airfinity database:
  - Triage based on publicly available data into general therapeutic categories/mechanism
  - Airfinity provided the key references/citations associated with the preclinical compounds
- Challenges in classifying preclinical compounds:
  - Amount/Type of data available varies substantially
  - Not every "published" preclinical compound is or will be a clinical candidate
    - Tool compound, lead series, etc. in publications
- Proposed classification on type of data available consistent with industry stages of discovery R&D:
  - Preclinical compounds designated as "Hit", "Early Lead", "Late Lead", "Potential Candidate"
  - Archived preclinical compounds lack of published data suggesting no further development; only computational-based antiviral data reported.
  - Compounds with prior clinical data designated as Approved Antiviral-Indication Expansion, Investigational Antiviral-Indication Expansion, or Repurposed (non-antiviral)

Examples of publicly available data for INTREPID Alliance review of preclinical compound/indications:

| in vitro                                   | Structure/Sequence  | <i>in vivo</i> Exposure (animal) | <i>in vivo</i> Efficacy (animal) | Prior Clinical Data Available |
|--------------------------------------------|---------------------|----------------------------------|----------------------------------|-------------------------------|
| Biochemical                                | Chemical structure  | PK                               | Treatment                        | Yes                           |
| Cell-based (e.g., replicon, pseudovirus)   | Amino acid sequence | Safety/Toxicology                | Prevention                       | No                            |
| Cell-based antiviral (wild-type, variants) | RNA sequence        |                                  |                                  |                               |
| ADME                                       |                     |                                  |                                  |                               |
| Resistance profile                         |                     |                                  |                                  |                               |

ADME: absorption, distribution, metabolism, and excretion; PK: pharmacokinetic.

#### INTREPID Alliance Preclinical Antiviral Landscape: Preclinical Antiviral Compounds Analysis Update (4<sup>th</sup> Edition)\*

- Preclinical Landscape Analyses previously reported on the INTREPID Alliance website:
  - Initial post within 3<sup>rd</sup> Edition with data through July 2024 was reported in October 2024. Available here.
- This 4<sup>th</sup> edition analysis of the data through December 2024 shows:
  - 168 distinct antiviral compounds in the antiviral preclinical development landscape associated with 189 indications; 93 for COVID-19 and 96 for Non-COVID.
- Data were organized based on stage of development:
  - Preclinical are novel unapproved antiviral compounds with only preclinical data and no clinical data.
  - Preclinical Exploratory are unapproved clinical phase or approved antivirals exploring activity against a different virus from the primary antiviral indication, including:
    - Approved Antiviral-Indication Expansion antiviral approved for one or more viral disease indications.
    - Investigational Antiviral-Indication Expansion antiviral in clinical development, not yet approved.
- Additional scientific analysis<sup>\*\*</sup> of only the novel preclinical compounds categorized them based on the relative stage of preclinical development from "Hit" to "Potential Candidate".

\*As of December 18, 2024; \*\*See criteria on slide 37.
#### **INTREPID Alliance Preclinical Triage: Stages of Preclinical Development**

Categories generally align with movement of a compound across the stages of drug discovery.

- Preclinical Compounds with only preclinical data and no clinical data designated as:
  - **Hit** high-throughput or compound library screening hit, initial antiviral activity requiring significant optimization. Limited or no *in vitro* data available supporting antiviral mechanism of action (MOA).
  - Early Lead limited Structure-Activity Relationship (SAR), antiviral activity associated with MOA, may have limited *in vitro/in vivo* pharmacokinetic data reported.
  - Late Lead potency consistent with candidate quality for the specific MOA, more extensive *in vitro* characterization (e.g., ADME profile, activity against clinically relevant virus strains/isolates), *in vivo* PK and/or animal efficacy model data reported.
  - Potential Candidate *in vivo* efficacy and safety dataset consistent with preparation for FDA IND (or similar) submission; compound has been reported by developer as a pipeline clinical candidate and/or in IND (or similar) enabling studies.
  - Archived progress on the compound has been stopped (timeframe stopped, >5 years); antiviral evidence is only computational; previously optimized drug from another antiviral/other indication that only has weak activity. May be useful to inform new screening or medicinal chemistry efforts.
  - Discontinued compound progression has been stopped for known reasons; for example, compound failed preclinical "IND" toxicology, change in business strategy, etc. May be useful to inform new screening or medicinal chemistry efforts.
- Preclinical Exploratory are Investigational ("unapproved") and Approved antivirals exploring antiviral activity against a different virus from the Investigational/Approved antiviral indication, including:
  - Approved Antiviral-Indication Expansion antiviral approved for one or more viral disease indications.
  - Investigational Antiviral-Indication Expansion antiviral in clinical development, not yet approved.



### Triage of Preclinical Data (3rd Edition Landscape)\*

- Initial triage of preclinical antiviral landscape data as of July 12, 2024, show 362 preclinical compound/indications.
- Preclinical antiviral compounds of interest are those that are directed at specific viral targets.



\*As previously shown in the 3<sup>rd</sup> Edition of the Preclinical Antiviral Landscape based on data up through July 12, 2024.



#### Summary of Preclinical Antiviral Compounds & Stage of Development (4<sup>th</sup> Edition)\*

| Stage of Preclinical    | Distinct  | # Coi | ompound/Indications** |           |  |
|-------------------------|-----------|-------|-----------------------|-----------|--|
| Development             | Compounds | All   | COVID-19              | Non-COVID |  |
| Preclinical***          | 168       | 189   | 93                    | 96        |  |
| On-going Activity       | 108       | 125   | 74                    | 51        |  |
| Potential Candidate     | 15        | 18    | 10                    | 8         |  |
| Late Lead               | 17        | 19    | 11                    | 8         |  |
| Early Lead              | 33        | 37    | 17                    | 20        |  |
| Archived & Discontinued | 60        | 64    | 19                    | 45        |  |
| Archived                | 55        | 57    | 18                    | 39        |  |
| Discontinued            | 5         | 7     | 1                     | 6         |  |
| Preclinical Exploratory | 8         | 23    | 1                     | 22        |  |
| App. AV-Ind. Exp.       | 4         | 16    | 0                     | 16        |  |
| Inv. AV-Ind. Exp.       | 4         | 7     | 1                     | 6         |  |
| Overall Total           | 176       | 212   | 94                    | 118       |  |

- 108 distinct Preclinical compounds have on-going activity
- These are associated with 125 viral disease indications
  - ▶ 74 (59.2%) target COVID-19

- 8 distinct Preclinical Exploratory investigational or approved antivirals have on-going activity
- These are associated with 23 viral disease indications
  - 22 (95.7%) target Non-COVID

\*As of December 18, 2024; \*\*Some compounds are being evaluated for more than 1 viral indication; \*\*\*App. AV-Ind. Exp.: Approved Antiviral-Indication Expansion; Inv. AV-Ind. Exp.: Investigational Antiviral-Indication Expansion.

© 2025 INTREPID Alliance. All Rights Reserved.

#### Summary of Preclinical Antiviral Compounds & Mechanism of Action (4<sup>th</sup> Edition)\*

| Machaniam of Action           | # Distinct Compounds** |          |           |  |  |
|-------------------------------|------------------------|----------|-----------|--|--|
|                               | All                    | COVID-19 | Non-COVID |  |  |
| Preclinical                   | 108                    | 73       | 35        |  |  |
| Entry                         | 34                     | 24       | 10        |  |  |
| Protease                      | 40                     | 35       | 5         |  |  |
| Replication                   | <b>31</b> 13           |          | 18        |  |  |
| Assembly/Release              | 2 0                    |          | 2         |  |  |
| Unspecified                   | 1                      | 1        | 0         |  |  |
| Preclinical Exploratory***    | 8                      | 1        | 7         |  |  |
| App. AV-Ind. Exp. Replication | 4                      | 0        | 4         |  |  |
| Inv. AV-Ind. Exp. Protease    | 1                      | 1        | 0         |  |  |
| Inv. AV-Ind. Exp. Replication | 3                      | 0        | 3         |  |  |
| Overall Total                 | 116                    | 74       | 42        |  |  |

- 108 distinct Preclinical compounds have on-going activity
- Primary target MOA:
  - Overall: 40 protease (37%)
  - COVID-19: 35 protease (47.9%)
  - ► Non-COVID: 18 replication (51.4%)

- 8 distinct Preclinical Exploratory investigational or approved antivirals have on-going activity
- Primary target MOA:
  - Overall: 7 replication (87.5%)
  - COVID-19: 1 protease (100%)
  - Non-COVID: 7 replication (100%)

\*As of December 18, 2024; \*\*Some compounds are being evaluated for more than 1 viral indication; \*\*\*App. AV-Ind. Exp.: Approved Antiviral-Indication Expansion; Inv. AV-Ind. Exp.: Investigational Antiviral-Indication Expansion.

© 2025 INTREPID Alliance. All Rights Reserved.

#### Changes in Preclinical Antiviral Pipeline (4<sup>th</sup> Edition)\*

New Additions and Changes in Status from 3<sup>rd</sup> to 4<sup>th</sup> Edition

| Virus Family    | Indication           | Compound                                    | Hit (2) | Early Lead (12) | Late Lead (2) | Potential Candidate (5) |
|-----------------|----------------------|---------------------------------------------|---------|-----------------|---------------|-------------------------|
|                 |                      | GC-376                                      |         |                 |               | NEW                     |
|                 |                      | GRL-0617                                    |         | NEW             |               |                         |
| Coronaviridae   | COVID-19             | TDI-015051                                  |         | NEW             |               |                         |
| coronaviruae    |                      | RU-0415529                                  | NEW     |                 |               |                         |
|                 | SARS-CoV-1           | DCOY 102/103                                |         | NEW             |               |                         |
|                 | Seasonal Coronavirus | DCOY 102/103                                |         | NEW             |               |                         |
| Paramyyoyiridae | Nipah virus          | 4'-fluorouridine                            |         | NEW             |               |                         |
| Faraniyxovindae | Parainfluenza        | GHP-88309                                   |         |                 |               | NEW                     |
|                 | Junin virus          | 4'-fluorouridine                            |         |                 |               | NEW                     |
| Arenaviridae    | Lassa fever          | 4'-fluorouridine                            |         |                 |               | NEW                     |
|                 | Dengue               | JNJ-A07                                     |         |                 | NEW           |                         |
| Flaviviridae    | Yellow fever         | BSBI-YF                                     |         |                 | NEW           |                         |
|                 | Zika virus           | MLT201                                      | NEW     |                 |               |                         |
|                 |                      | NV-387-T                                    |         |                 |               | NEW                     |
|                 |                      | 5-iodo-2-deoxyuridine                       |         | NEW             |               |                         |
|                 |                      | 7-deaza analogs of S-adenosyl methionine    |         | NEW             |               |                         |
| Povviridae      | Mnox                 | CMLDBU6128 and improved pyridopyrimidinones |         | NEW             |               |                         |
| Poxviridae      | мрох                 | HPMPDAP (diaminopurine)                     |         | NEW             |               |                         |
|                 |                      | ST357 (TTP-018)                             |         | NEW             |               |                         |
|                 |                      | TTP-6171                                    |         | NEW             |               |                         |
|                 |                      | UMM-766                                     |         | NEW             |               |                         |

\*As of December 18, 2024.

#### Preclinical Compounds by Stage of Preclinical Development: COVID-19 Indications

The majority of preclinical compounds are under evaluation for SARS-CoV-2/COVID-19 (74/125, 59.2%).

#### COVID-19 Preclinical Compound/Indications (n=74)

| Hit (36)                       |                                          | Early Lead (17)  |                                           | Late Lead (11) | Potential Candidate (10) |
|--------------------------------|------------------------------------------|------------------|-------------------------------------------|----------------|--------------------------|
| 6-72-2a                        | Anisodamine                              | 21i              | C6G25S                                    | 2-Thiouridine  | CDI-45205                |
| AVI-8053                       | Borneol Ester, PROTACs                   | D6               | EDDC-2214                                 | Beta-521       | COR803                   |
| CD04872SC                      | Epigallocatechin-3-gallate               | EK1C4            | FBP (frog-defensin-derived basic peptide) | HT-002         | GC376**                  |
| H84T-BanLec                    | IPB02                                    | GRL0617**        | NBCoV63                                   | LNA ASOs       | P315V3                   |
| IPB19                          | Lycium barbarum glycopeptide             | PLpro Inhibitors | RCYM002                                   | Mpro inhibitor | SY110                    |
| MCULE-5948770040               | MPI5                                     | SBCoV202         | Small molecule inhibitor                  | PF-07957472    | CDI-873                  |
| MP18                           | MRX-18                                   | STI 4398         | SWC423                                    | 3N39v4-Fc      | COV-X                    |
| MXB-4                          | MXB-9                                    | TDI-015051**     | Therapeutic interfering particles         | DCOY 102/103   | NV-387-R                 |
| Napthoquinones                 | Pan-coronavirus broad spectrum antiviral | TNX-3500         |                                           | Jun12682       | RCYM003                  |
| Penciclovir                    | Pentosan Polysulfate                     |                  |                                           | ML2006a4       | THY-01                   |
| Protegrin-2                    | RECCE 529                                |                  |                                           | MVR-V001       |                          |
| RU-0415529**                   | SACT-Covid19                             |                  |                                           |                |                          |
| Sangivamycin                   | Saquinavir                               |                  |                                           |                |                          |
| SARS-CoV-2 PLpro Inhibitor     | SBFM-PL4                                 |                  |                                           |                |                          |
| SPIKENET                       | Spirooxindole                            |                  |                                           |                |                          |
| SSYA10-001                     | TEAR-CoV                                 |                  |                                           |                |                          |
| Urtica dioica agglutinin (UDA) | ViruSAL                                  |                  |                                           |                |                          |
| YH-6                           | ZINC00000639429                          |                  |                                           |                |                          |
|                                |                                          |                  |                                           |                |                          |

\*As of December 18, 2024. Archived and Discontinued compound/indications are not included in this summary; \*\*New.



#### Preclinical Compounds by Stage of Preclinical Development: Non-COVID-19 Indications

For Non-COVID-19 preclinical compounds, Influenza has the highest number under evaluation (12/51, 23.5%).

#### Non-COVID-19 Preclinical Compound/Indications (n=51)

| Hit (15)                                |                                          | Early Lead (20)                               |                                            | Late Lead (8)   | Potential Candidate (8) |
|-----------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------|-------------------------|
| MLT202                                  | SRI-42718                                | Chikungunya antiviral                         | NBCoV63                                    | ERDRP-0519      | THY-01                  |
| KCB261770                               | Pan-coronavirus broad spectrum antiviral | 5-iodo-2-deoxyuridine**                       | 7-deaza analogs of S-adenosyl methionine** | VIKI-PEG4-chol  | GHP-88309**             |
| SSYA10-001                              | Pan-coronavirus broad spectrum antiviral | CMLDBU6128 and improved pyridopyrimidinones** | HPMPDAP (diaminopurine)**                  | 2-Thiouridine   | AnQlar                  |
| SSYA10-001                              | Pan-flavivirus broad spectrum antiviral  | ST357 (TTP-018)**                             | TTP-6171**                                 | ING-1466        | 4'-fluorouridine**      |
| MLT201**                                | Pan-flavivirus broad spectrum antiviral  | UMM-766**                                     | 4'-fluorouridine**                         | VIKI-dPEG4-toco | NV-387-T**              |
| Dengue antiviral (Protinhi)             | MLT201                                   | DCOY 102/103**                                | NBCoV63                                    | BSBI-YF**       | THY-01                  |
| Pan-flavivirus broad spectrum antiviral | ALS-1                                    | DCOY3001 Pan-paramyxovirus                    | Compound 23b                               | JNJ-A07**       | VNT-101                 |
| T-1106 pronucleotides                   |                                          | Influenza A/B Inhibitor                       | IY7640                                     | UAWJ280         | 4'-fluorouridine**      |
|                                         |                                          | M355                                          | OA-10 (oleanolic acid)                     |                 |                         |
|                                         |                                          | VTose                                         | DCOY 102/103**                             |                 |                         |

#### Indication Legend



\*As of December 18, 2024. Archived and Discontinued compound/indications are not included in this summary; \*\*New.



#### INTREPID Alliance Preclinical Antiviral Landscape (4<sup>th</sup> Edition): Key Takeaways

- A total of 168 preclinical antiviral compounds under evaluation for the 13 viral families of pandemic potential; the majority of preclinical compounds are targeting COVID-19.
  - Non-COVID-19 preclinical compounds are targeting primarily Influenza (9.6%), mpox (6.4%), MERS-CoV and SARS-CoV-1 and Dengue (each at 4%); the remaining 17 indications are each below 3%.
  - Ribavirin is being evaluated for 10 potential expanded virus indications.
- No preclinical development activity was found for 6 of the 13 viral families (*Adenoviridae, Picornaviridae, Filoviridae, Filoviridae, Hantaviridae, Nairoviridae, & Peribunyaviridae*).
- In view of the 100 Days Mission for Non-COVID-19 indications, there are 16 compounds (preclinical data only) at the Late Lead or Potential Candidate stage of preclinical development.
  - Influenza (n=2 potential candidates, n=2 late leads)
  - Junin virus, Lassa fever, Mpox, Parainfluenza, SARS-CoV-1, and MERS-CoV (each with n=1 potential candidate)
  - Nipah & Dengue (each with n=2 late leads)
  - Measles & Yellow fever (each with 1 late lead)



## Preclinical Non-COVID-19 Indications



© 2025. All Rights Reserved.

#### # Preclinical Compound/Indications by Stage of Preclinical Development (Non-COVID-19; N=73)\*



Stage of Preclinical Development

Compound/Indications span the various stages of preclinical development.

\*As of December 18, 2024.

#### # Preclinical Compound/Indications by Viral Family (Non-COVID-19; N=73)\*



Ten of the 13 viral families with pandemic potential have preclinical compound/indications.

Orthomyxoviridae has the most compounds and is focused on Influenza.

\*As of December 18, 2024.



# # Preclinical Compound/Indications by Stage of Preclinical Development and Viral Family (Non-COVID-19; N=73)\*



Stage of Preclinical Development

Compound/Indications span the various stages of preclinical development.

Orthomyxoviridae (Influenza) has the most compound/indications.

\*As of December 18, 2024.



© 2025. All Rights Reserved.

#### # Preclinical Compound/Indications by Viral Family and Stage of Preclinical Development (Non-COVID-19; N=73)\*



Compound/Indications span the various stages of preclinical development.

► The highest activity (12/51, 23.5%) is focused on *Orthomyxoviridae* (Influenza).

\*As of December 18, 2024.

#### # Preclinical Compound/Indications by Viral Disease and Stage of Preclinical Development (Non-COVID-19; N=73)\*



\*As of December 18, 2024.

INTREPID ALLIANCE

# Preclinical Compound/Indications by Stage of Preclinical Development and Viral Disease (Non-COVID-19; N=73)\*



Most are focused on Influenza.

INTREPID ALLIANCE

\*As of December 18, 2024.

#### Preclinical Compound/Indication Category by Stage of Preclinical Development and Mechanism of Action (Non-COVID-19; N=73)\*



Stage of Preclinical Development

MOAs for Compound/Indications span the various stages of preclinical development.

All of the Approved or Investigational Antivirals for indication expansion are replication inhibitors.

\*As of December 18, 2024.

INTREPID ALLIANCE

#### Preclinical Compound/Indication Category by Mechanism of Action and Stage of Preclinical Development (Non-COVID-19; N=73)\*



Compound/Indications span the various stages of preclinical development and MOAs.
The MOA rank order is Replication, Entry, Protease, Assembly/Release.

\*As of December 18, 2024.

INTREPID ALLIANCE



## Preclinical COVID-19 Indications



#### COVID-19 Compounds by Stage of Preclinical Development (N=75)\*



Stage of Preclinical Development

#### COVID-19 Compounds by Stage of Preclinical Development and Mechanism of Action (N=75)\*



Stage of Preclinical Development

#### COVID-19 Compounds by Mechanism of Action and Stage of Preclinical Development (N=75)\*





# Preclinical Antiviral Sponsors and Developers



© 2025. All Rights Reserved.

#### Preclinical Antiviral Landscape: Sponsors & Developers\*

- Biotech/Pharma (44%) and University/Research Institutes (50%) represent 94% of 125 sponsors/developers for preclinical compound/indications.
  - As programs move towards Potential Candidate, the relative contribution of sponsors/developers shifts more towards Biotech/Pharma. This is consistent with the increased resources needed to prepare for regulatory submissions and entry into clinical development.
- Sponsors/Developers of preclinical antiviral compound/indications are located in 24 countries across 5 of the 6 WHO-Regions.
  - The majority (87.5%) are located in countries with high-income economies.
  - The remainder have upper-middle income (8.3%) or lower-middle income (4.2%) economies.
- The United States (WHO Americas; High income) and China (WHO Western Pacific; Upper-middle income) have the most representation at **48.8%** and **12.8%**, respectively.

\*As of December 18, 2024; Includes preclinical compounds categorized as Hit, Early Lead, Late Lead, or Potential Candidate.



#### Preclinical Antiviral Compound/Indications by Sponsor/Developer Type (N=125)\*



Sponsor/Developer Type

\*As of December 18, 2024; Includes preclinical compounds categorized as Hit, Early Lead, Late Lead, or Potential Candidate. CRO: contract research organization.



#### Preclinical Antiviral Compound/Indications by Sponsor/Developer WHO-Region\* (COVID-19 only and Non-COVID-19; N=125)



- There are twice as many COV/ID 10 analific wareve New COV/ID 10 precipieal compound/in
- There are twice as many COVID-19-specific versus Non-COVID-19 preclinical compound/indications.
  - COVID-19-specific: 74 are located in 5 of the 6 WHO-Regions.
  - ► Non-COVID-19-specific: 51 are located in 3 of 6 WHO-Regions.
- ► The Americas and Western Pacific regions are primarily driven by the United States and China.

\*As of December 18, 2024; Includes preclinical compounds categorized as Hit, Early Lead, Late Lead, or Potential Candidate.

© 2025. All Rights Reserved.

#### Promising and Watch & Wait Clinical Antiviral Compound/Indications\* by Country and World Bank Economy Class\*\*



- The majority (86%) of sponsors/developers of are located in countries with high-income economies.
  - The remainder are those with upper-middle income (13.2%) or lower-middle income (0.8%) economies.
- The United States (HI) and China (UMI) have the most representation across the 24 countries.

\*As of December 18, 2024; Includes preclinical compounds categorized as Hit, Early Lead, Late Lead, or Potential Candidate; \*\*<u>World Bank country classifications by income level for 2024-2025</u>; LMI: lower-middle income; UMI: upper-middle income; HI: high-income.





# Supplemental Information



© 2025. All Rights Reserved.

#### INTREPID Alliance Clinical Antiviral Landscape: Clinical Antiviral Compounds Analysis Update (4<sup>th</sup> Edition)\*

New Additions and Changes in Status from 3<sup>rd</sup> to 4<sup>th</sup> Edition

| Compound             | Indication                   | 3 <sup>rd</sup> Edition Category                                         | 4 <sup>th</sup> Edition Category                                  |
|----------------------|------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| Brincidofovir (IV)** | Human Adenovirus             | -                                                                        | Approved Antiviral – Indication Expansion Phase 2                 |
| Molnupiravir**       | Dengue                       | -                                                                        | Approved Antiviral – Indication Expansion Phase 2                 |
| Adefovir**           | Мрох                         | _                                                                        | Approved Antiviral – Indication Expansion Preclinical Exploratory |
| Remdesivir**         | Dengue, MERS-CoV, SARS-CoV-1 | -                                                                        | Approved Antiviral – Indication Expansion Preclinical Exploratory |
| Zanamavir            | Dengue                       | Approved – Indication Expansion Phase 1                                  | Approved – Indication Expansion Phase 2                           |
| CD388                | Influenza                    | Watch & Wait                                                             | Promising                                                         |
| TG-1000              | Influenza                    | Watch & Wait                                                             | Promising                                                         |
| ZX-7101A             | Influenza                    | Watch & Wait                                                             | Promising                                                         |
| WPV01/Ritonavir      | COVID-19                     | Watch & Wait – Phase 1                                                   | COVID-19 Archive                                                  |
| Cidofovir            | Human Adenovirus             | Approved Antiviral – Indication Expansion Preclinical Exploratory        | Non-COVID Archive                                                 |
| Galidesivir          | SARS-CoV-1                   | Investigational Antiviral – Indication Expansion Preclinical Exploratory | Non-COVID Archive                                                 |
| Valganciclovir       | COVID-19; Human Adenovirus   | Approved Antiviral – Indication Expansion Preclinical Exploratory        | Discontinued – Lack of Activity                                   |
| Mosnodenvir          | Dengue                       | Promising – Phase 2                                                      | Discontinued – Business Strategy                                  |
| Obeldesivir          | COVID-19                     | Promising – Phase 3                                                      | Discontinued – Lack of Efficacy                                   |
| Bemnifosbuvir        | COVID-19                     | Watch & Wait – Phase 3                                                   | Discontinued – Lack of Efficacy                                   |
| BIT-225              | COVID-19                     | Watch & Wait – Phase 2                                                   | Discontinued – Lack of Efficacy                                   |
| AL-794               | Influenza                    | Archived                                                                 | Discontinued – PK Variability                                     |
| Radavirsen           | Influenza                    | Archived                                                                 | Discontinued – Lack of Funding                                    |
| Brincidofovir (Oral) | Human Adenovirus             | Archived                                                                 | Discontinued – Low Enrollment                                     |
| Flufirvitide-3       | Influenza                    | Archived                                                                 | Discontinued – Lack of Efficacy                                   |

\*As of December 18, 2024; See criteria and references on slides 10-11; \*\*New additions.



## 14 Compounds Approved by a Stringent Regulatory Authority (S.A.)\*

COVID-19 (n=4), Influenza (n=8), Smallpox/Other Poxviruses (n=2)

| Compound                  | Developer/Sponsor                                                | Mechanism/Target             |
|---------------------------|------------------------------------------------------------------|------------------------------|
| COVID-19                  |                                                                  |                              |
| Ensitrelvir               | Shionogi, Ildong                                                 | Protease – 3CL pro           |
| Molnupiravir              | Merck & Co./Merck Sharp & Dohme (MSD), Ridgeback Biotherapeutics | Replication – RdRp           |
| Nirmatrelvir/Ritonavir    | Pfizer                                                           | Protease – 3CL pro           |
| Remdesivir                | Gilead Sciences                                                  | Replication – RdRp           |
| INFLUENZA                 |                                                                  |                              |
| Amantadine                | Novartis                                                         | Entry – Proton Channel M2    |
| Baloxavir Marboxil        | Shionogi, Roche                                                  | Replication – Endonuclease   |
| Favipiravir**             | FUJIFILM Toyama Chemical                                         | Replication – RdRp           |
| Laninamivir               | Daiichi Sankyo                                                   | Assembly/Release – NA        |
| Oseltamivir               | Roche                                                            | Assembly/Release – NA        |
| Peramivir                 | BioCryst Pharmaceuticals                                         | Assembly/Release – NA        |
| Rimantadine               | Allergan                                                         | Entry – Proton Channel M2    |
| Zanamivir***              | GlaxoSmithKline (GSK)                                            | Assembly/Release – NA        |
| SMALLPOX/OTHER POXVIRUSES |                                                                  |                              |
| Brincidofovir             | Emergent BioSolutions                                            | Replication – DNA Polymerase |
| Tecovirimat               | Siga Technologies                                                | Assembly/Release – VP37      |

\*As of December 18, 2024; WHO defined Stringent Authority (<u>https://www.who.int/publications/m/item/list-of-transitional-wlas</u>); \*\*Favipiravir also has O.N.A. approval; \*\*\*Zanamivir also has Dengue study via Investigator Sponsored Study.



### 9 Compounds Approved by Other National Authority (O.N.A.)\*

COVID-19 (n=5), Influenza (n=0), COVID-19 & Influenza (n=3), Smallpox/Other Poxviruses (n=1)

| Compound                  | Developer/Sponsor                                                     | Mechanism/Target   |  |
|---------------------------|-----------------------------------------------------------------------|--------------------|--|
| COVID-19                  |                                                                       |                    |  |
| Anudina                   | HeNan Sincere Biotech, Zhengzhou Granlen PharmaTech, Genuine Biotech, | Paplication PdPn   |  |
| Azvuaine                  | Fosun Pharma                                                          | κεριτατιστι – κακρ |  |
| Favipiravir**             | Promomed, R-Pharm                                                     | Replication – RdRp |  |
| Leritrelvir (RAY1216)     | Guangdong Zhongsheng Pharmaceutical                                   | Protease – 3CL pro |  |
| Mindeudesivir (VV116)     | Shanghai Junshi Biosciences                                           | Replication – RdRp |  |
| Simpotrolvir/Ditopovir    | Simcere Pharmaceutical, Shanghai Institute of Materia Medica (SIMM),  | Protease - 3CL pro |  |
|                           | Jiangsu Simcere Pharmaceutical                                        |                    |  |
| INFLUENZA                 |                                                                       |                    |  |
| -                         | -                                                                     | _                  |  |
| COVID-19 & INFLUENZA      |                                                                       |                    |  |
| Enisamium (VR17-04)       | Farmak                                                                | Replication – RdRp |  |
| Triazavirin               | Medsintez Pharmaceutical                                              | Replication – RdRp |  |
| Umifenovir                | Pharmstandard                                                         | Entry – Fusion     |  |
| SMALLPOX/OTHER POXVIRUSES |                                                                       |                    |  |
| NIOCH-14                  | Vector Center                                                         | Assembly/Release   |  |

\*As of December 18, 2024; WHO defined Other National Authority (<u>https://www.who.int/publications/m/item/list-of-transitional-wlas</u>); \*\*Favipiravir also has S.A. approval.

### 12 "Promising" Novel Clinical Antiviral Compounds\*

COVID-19 (n=6), Influenza (n=5), Polio (n=1)

| Viral Disease | Compound            | Developer/Sponsor                            | Country       | Mechanism/Target           | Phase of<br>Development |
|---------------|---------------------|----------------------------------------------|---------------|----------------------------|-------------------------|
|               | EDP-235             | Enanta Pharmaceuticals                       | U.S.          | Protease – 3CL pro         | 2                       |
|               | GST-HG171/Ritonavir | Fujian Cosunter Pharmaceutical               | China         | Protease – 3CL pro         | 3                       |
|               | Ibuzatrelvir        | Pfizer                                       | U.S.          | Protease – 3CL pro         | 2                       |
| COVID-19      | QLS1128             | Qilu Pharmaceutical                          | China         | Protease – 3CL pro         | 3                       |
|               | SHEN26              | Kexing Biopharm                              | China         | Replication – RdRp         | 2                       |
|               | STI-1558            | Sorrento Therapeutics                        | U.S.          | Protease – 3CL pro         | 3                       |
|               | CD388**             | Cidara Therapeutics, Janssen Pharmaceuticals | U.S., Belgium | Entry – Fc Drug Conjugate  | 2                       |
|               | GP681               | Jiangxi Qingfeng Pharmaceutical              | China         | Replication – Endonuclease | 3                       |
| Influenza     | Onradivir           | Raynovent                                    | China         | Replication – DdRp         | 3                       |
| _             | TG-1000**           | TaiGen Biotechnology                         | Taiwan        | Replication – DdRp         | 3                       |
|               | ZX-7101A**          | Nanjing Zenshine Pharmaceuticals             | China         | Replication – Endonuclease | 3                       |
| Polio         | V-7404              | ViroDefense, Pfizer                          | U.S.          | Protease – EV 3C pro       | 1                       |

\*As of December 18, 2024; \*\*CD388 new addition, TG-1000 and ZX-7101A moved forward from Watch & Wait.



#### "Watch & Wait" Novel Clinical Antiviral Compounds (N=16 of 27)\* COVID-19 (n=16)

| Viral Disease | Compound                | Developer/Sponsor                                     | Country           | Mechanism/Target   | Phase of<br>Development |
|---------------|-------------------------|-------------------------------------------------------|-------------------|--------------------|-------------------------|
| -             | ALG-097558              | Aligos Therapeutics                                   | U.S.              | Protease – 3CL pro | 1                       |
|               | ASC11/Ritonavir         | Ascletis Pharma                                       | China             | Protease – 3CL pro | 1                       |
|               | CDI-988                 | CoCrystal Pharma                                      | U.S.              | Protease – 3CL pro | 1                       |
|               | Delcetravir             | Esfam Biotech                                         | Australia         | Entry – Attachment | 1                       |
|               | FB2001                  | Frontier Biotechnologies                              | China             | Protease – 3CL pro | 3                       |
|               | GS-00202                | Gusen Pharma                                          | China             | Protease – 3CL pro | 1                       |
|               | HS 10517/Ritonavir      | Abbott Laboratories, AbbVie, Gilead Sciences, Jiangsu | U.S., U.S., China | Protease – 3CL pro | 2                       |
|               |                         | Hansoh Pharmaceutical                                 |                   |                    |                         |
| COVID-19      | HY3000                  | Hybio Pharmaceutical (formerly Hanyu Pharmaceutical)  | China             | Entry – Fusion     | 1                       |
|               | IPD-52520               | IAVI                                                  | U.S.              | Entry              | 1                       |
|               | ISM3312                 | Insilico Medicine                                     | Hong Kong         | Protease – 3CL pro | 1                       |
|               | Limnetrelvir (ABBV 903) | AbbVie                                                | U.S.              | Protease – 3CL pro | 1                       |
|               | NV-387                  | NanoViricides                                         | U.S.              | Entry – Attachment | 1                       |
|               | RQ-01                   | Red Queen Therapeutics                                | U.S.              | Entry              | 1                       |
|               | S-892216                | Shionogi                                              | Japan             | Protease – 3CL pro | 1                       |
|               | WPV01                   | Westlake University                                   | China             | Protease – 3CL pro | 3                       |
|               | YKYY017**               | Yuekang Pharmaceutical                                | China             | Entry – Fusion     | 3                       |

\*As of December 18, 2024; \*\*YKYY017 moved forward from Phase 2 to Phase 3.



#### "Watch & Wait" Novel Clinical Antiviral Compounds (N=11 of 27)\*

Influenza (n=4), Lassa fever (n=2), and Chapare hemorrhagic fever, Dengue, Mpox, Polio, and Rhinovirus (each with n=1)

| Viral Disease             | Compound        | Developer/Sponsor                      | Country     | Mechanism/Target           | Phase of<br>Development |
|---------------------------|-----------------|----------------------------------------|-------------|----------------------------|-------------------------|
| Influenza                 | AV5080          | Viriom                                 | Russia      | Assembly/Release – NA      | 2                       |
|                           | CC-42344        | CoCrystal Pharma                       | U.S.        | Replication – Flu A Pol    | 2                       |
|                           | HNC042          | Guangzhou Henovcom Bioscience Co. Ltd. | China       | Assembly/Release – NA      | 2                       |
|                           | TRX100 (AV5124) | Traws Pharma                           | U.S.        | Replication – Endonuclease | 1                       |
|                           | ARN-75039       | Arisan Therapeutics                    | U.S.        | Entry – Fusion             | 1                       |
| Lassa lever               | LHF 535**       | Kineta                                 | U.S.        | Entry – Fusion             | 1                       |
| Chapare hemorrhagic fever | LHF 535**       | Kineta                                 | U.S.        | Entry – Fusion             | 1                       |
| Dengue                    | EYU688          | Novartis                               | Switzerland | Replication – NS4B         | 2                       |
| Мрох                      | ASC10           | Ascletis Pharma                        | China       | Replication                | 1                       |
| Polio                     | Pocapavir       | ViroDefense                            | U.S.        | Entry                      | 1                       |
| Rhinovirus                | Vapendavir      | Vaxart, Altesa Biosciences             | U.S., U.S.  | Entry – Capsid             | 2                       |

\*As of December 18, 2024; \*\*LHF535 under evaluation for two viral diseases.

#### Preclinical Compounds for COVID-19 (N=21)\*

Potential Candidates (n=10), Late Leads (n=11)

| Phase of<br>Development | Viral Disease | Compound       | Developer/Sponsor                                            | Country     | Mechanism/Target   |
|-------------------------|---------------|----------------|--------------------------------------------------------------|-------------|--------------------|
|                         |               | CDI-45205      | CoCrystal Pharma                                             | U.S.        | Protease – 3CL pro |
|                         | -             | CDI-873        | CoCrystal Pharma                                             | U.S.        | Protease – 3CL pro |
|                         |               | COR803         | Quince Therapeutics (formerly Cortexyme)                     | U.S.        | Protease – 3CL pro |
|                         |               | COV-X          | Infex Therapeutics                                           | U.K.        | Protease – PL pro  |
| Potential Candidate     |               | GC376**        | Anivive Lifesciences                                         | U.S.        | Protease – 3CL pro |
| r otential candidate    |               | NV-387-R       | NanoViricides                                                | U.S.        | Entry              |
|                         | -             | P315V3         | Institute of Microbiology of the Chinese Academy of Sciences | China       | Entry – Fusion     |
|                         | _             | RCYM003        | Raynovent                                                    | China       | Protease – 3CL pro |
|                         | -             | SY110          | Sichuan University                                           | China       | Protease – 3CL pro |
|                         |               | THY-01         | Thylacine Biotherapeutics Inc.                               | U.S.        | Entry – Fusion     |
|                         |               | 2-Thiouridine  | Hokkaido University                                          | Japan       | Replication – RdRp |
|                         |               | 3N39v4-Fc      | Juntendo University                                          | Japan       | Entry – Spike      |
|                         | -             | Beta-521       | Benevira                                                     | U.S.        | Entry              |
|                         |               | DCOY 102/103   | Decoy Therapeutics                                           | U.S.        | Entry – Decoy      |
|                         |               | HT-002         | Hoth Therapeutics                                            | U.S.        | Entry              |
| Late Lead               | COVID-19      | Jun12682       | Rutgers University                                           | U.S.        | Protease – PL pro  |
|                         |               | LNA ASOs       | University of California Berkeley                            | U.S.        | Replication – RNA  |
|                         |               | ML2006a4       | Stanford University                                          | U.S.        | Protease – 3CL pro |
|                         |               | Mpro inhibitor | Exscientia                                                   | U.K.        | Protease – 3CL pro |
|                         |               | MVR-V001       | MVRIX                                                        | South Korea | Entry – Decoy      |
|                         | -             | PF-07957472    | Pfizer                                                       | U.S.        | Protease – PL pro  |



\*As of December 18, 2024; \*\*GC376 is a new addition.

#### Preclinical Compounds for Non-COVID-19 (N=16)\*

Potential Candidates (n=8), Late Leads (n=8)

| Phase of<br>Development | Viral Disease | Compound           | Developer/Sponsor                                             | Country          | Mechanism/Target   |
|-------------------------|---------------|--------------------|---------------------------------------------------------------|------------------|--------------------|
| Potential Candidate     | Junin virus   | 4'-fluorouridine** | U.S. CDC and Utah State University                            | U.S., U.S.       | Replication – RdRp |
|                         | Lassa fever   | 4'-fluorouridine** | U.S. CDC and Utah State University                            | U.S., U.S.       | Replication – RdRp |
|                         | MERS-CoV      | THY-01             | Thylacine Biotherapeutics Inc.                                | U.S.             | Entry – Fusion     |
|                         | SARS-CoV-1    | THY-01             | Thylacine Biotherapeutics Inc.                                | U.S.             | Entry – Fusion     |
|                         | Influenza     | AnQlar             | Virpax Pharmaceuticals                                        | U.S.             | Entry              |
|                         |               | VNT-101            | Via Nova Therapeutics                                         | U.S.             | Replication        |
|                         | Parainfluenza | GHP-88309**        | Georgia State Univ., Icahn School of Medicine at Mount Sinai, |                  | Replication – RdRp |
|                         |               |                    | Emory Univ., Univ. of Washington                              | 0.3., 0.3., 0.3. |                    |
|                         | Мрох          | NV-387-T           | NanoViricides                                                 | U.S.             | Entry              |
| Late Lead               | Dengue        | 2-Thiouridine      | University of Porto, Institute for Antiviral Research         | Portugal, U.S.   | Replication – RdRp |
|                         |               | JNJ-A07**          | Johnson & Johnson Innovative Medicine                         | Belgium          | Protease           |
|                         | Yellow fever  | BSBI-YF**          | Blumberg Institute                                            | U.S.             | Replication – NS4B |
|                         | Influenza     | ING-1466           | University of Illinois at Chicago, Chicago BioSolutions       | U.S.             | Entry – Flu HA     |
|                         |               | UAWJ280            | University of Georgia, University of Arizona                  | U.S., U.S.       | Entry – Flu M2     |
|                         | Measles       | ERDRP-0519         | Paul Ehrlich Institute                                        | Germany          | Replication – RdRp |
|                         | Nipah virus   | VIKI-dPEG4-toco    | Columbia University, Claude Bernard University                | U.S., France     | Entry – Fusion     |
|                         |               | VIKI-PEG4-chol     | Columbia University, Claude Bernard University                | U.S., France     | Entry – Fusion     |

\*As of December 18, 2024; \*\*4'-fluorouridine, GHP-88309, JNJ-A07, and BSBI-YF are new additions.



#### Ribavirin has several ongoing activities in both the Clinical and Preclinical space\*

Clinical Studies (n=5); Preclinical Exploratory (n=10)

| Phase of<br>Development | Viral Disease                      | Developer/Sponsor                           | Country                    | Mechanism/<br>Target |
|-------------------------|------------------------------------|---------------------------------------------|----------------------------|----------------------|
| Phase 3                 | COVID-19                           | Bausch Health                               | Canada                     | IMPDH1**             |
| Phase 2                 | Crimean Congo hemorrhagic fever*** | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Influenza                          | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Japanese encephalitis              | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Lassa fever                        | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
| Preclinical Exploratory | Argentine hemorrhagic fever        | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Dengue                             | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Hendra virus                       | Bausch Health                               | Canada                     | IMPDH1               |
|                         | Human Adenovirus A-G               | Bausch Health                               | Canada                     | IMPDH1               |
|                         | Lujo hemorrhagic fever             | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Measles                            | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Мрох                               | Bausch Health, Roche                        | Canada, Switzerland        | IMPDH1               |
|                         | Nipah virus                        | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Parainfluenza                      | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |
|                         | Zika                               | Bausch Health, Roche, Chugai Pharmaceutical | Canada, Switzerland, Japan | IMPDH1               |

\*As of December 18, 2024; \*\*IMPDH1: Inosine-5'-Monophosphate Dehydrogenase 1; \*\*\*A second Phase 2 study is also ongoing for ribavirin in combination with favipiravir.
## Archived Antiviral Compounds for COVID-19\* (N=19)

#### Clinical (n=1), Preclinical (n=18)

| Phase of<br>Development | Viral<br>Disease | Compound                             | Developer/Sponsor                                                         | Country          | Mechanism/Target                  |
|-------------------------|------------------|--------------------------------------|---------------------------------------------------------------------------|------------------|-----------------------------------|
| Clinical                | COVID-19         | WPV01/Ritonavir**                    | Westlake University                                                       | China            | Protease – 3CL pro                |
|                         |                  | 4'-Fluorouridine                     | Georgia State Univ., Emory Univ., Texas Biomedical Research Institute     | U.S., U.S., U.S. | Replication – RdRp                |
|                         |                  | AB-343                               | Arbutus Biopharma                                                         | U.S.             | Protease – 3CL pro                |
|                         |                  | Antisense Oligonucleotides           | Sarepta Therapeutics                                                      | U.S.             | Viral RNA                         |
|                         |                  | ATV006                               | Guangdong Provincial Center for Disease Control and Prevention            | China            | Replication – RdRp                |
|                         |                  | GDI-4405                             | Jiangsu Hansoh Pharmaceutical                                             | China            | Protease – 3CL pro                |
|                         | COVID-19         | GS-621763                            | Gilead Sciences                                                           | U.S.             | Replication – RdRp                |
|                         |                  | GS-6620                              | Gilead Sciences                                                           | U.S.             | Protease – 3CL pro                |
|                         |                  | Oral nsp12 inhibitor                 | Arbutus Biopharma                                                         | U.S.             | Replication – RdRp                |
| Preclinical             |                  | PF-00835231                          | Pfizer                                                                    | U.S.             | Protease – 3CL pro                |
|                         |                  | 1KJ0-7***                            | Shahid Chamran University                                                 | Iran             | Protease – 3CL pro                |
|                         |                  | 2ERW-9***                            | Shahid Chamran University                                                 | Iran             | Protease – 3CL pro                |
|                         |                  | Ab001***                             | Agastiya Biotech                                                          | U.S.             | Entry – ACE2; Replication - NSP15 |
|                         |                  | Bananin***                           | Medsintez Pharmaceutical                                                  | Russia           | NSP13 helicase                    |
|                         |                  | Chromone-4c***                       | Pritzker School of Molecular Engineering                                  | U.S.             | NSP13 helicase                    |
|                         |                  | Coumarin-EM04***                     | Sambalpur University                                                      | India            | Protease – 3CL pro                |
|                         |                  | LMed-052***                          | State University of Londrina, Federal University of Rio de Janeiro (UFRJ) | Brazil           | Replication – RdRp                |
|                         |                  | LMed-087***                          | State University of Londrina, Federal University of Rio de Janeiro (UFRJ) | Brazil           | Replication – RdRp                |
|                         |                  | Monomethylated Triazolopyrimidine*** | University of Hyderabad, National Institute of Animal Biotechnology       | India            | Replication – RdRp                |

\*As of December 18, 2024; \*\*WPV01/ritonavir does not require ritonavir and is progressing as WPV01; \*\*\*These compounds only have *in silico* modeling data.



# Archived Antiviral Compounds for Non-COVID-19\* (N=14 of 46)

#### Clinical (n=7), Preclinical (n=7)

| Phase of<br>Development | Viral Disease        | Compound           | Developer/Sponsor                          | Country     | Mechanism/Target          |
|-------------------------|----------------------|--------------------|--------------------------------------------|-------------|---------------------------|
|                         | Human Adenovirus A-G | Cidofovir          | Investigator Initiated - compassionate use | U.S.        | Replication DNA pol       |
|                         | MERS-CoV             | Galidesivir        | BioCryst Pharmaceuticals, NIAID            | U.S., U.S.  | Replication – RdRp        |
|                         | SARS-CoV-1           | Galidesivir        | BioCryst Pharmaceuticals, NIAID            | U.S., U.S.  | Replication – RdRp        |
| Clinical                | Ebola                | Galidesivir        | BioCryst Pharmaceuticals, NIAID            | U.S., U.S.  | Replication – RdRp        |
|                         | Marburg              | Galidesivir        | BioCryst Pharmaceuticals, NIAID            | U.S., U.S.  | Replication – RdRp        |
|                         | Dengue               | Galidesivir        | BioCryst Pharmaceuticals, NIAID            | U.S., U.S.  | Replication – RdRp        |
|                         | Zika                 | Galidesivir        | BioCryst Pharmaceuticals, NIAID            | U.S., U.S.  | Replication – RdRp        |
| Preclinical             |                      | CD-SA cyclodextrin | University of Geneva                       | Switzerland | Entry – Viral Envelope    |
|                         | Influenza            | Oral FluCide       | NanoViricides                              | U.S.        | Not yet confirmed         |
|                         | IIIIueiiza           | STP-702            | SirnaOmics                                 | U.S.        | Replication – siRNA       |
|                         |                      | Tamiphosphor       | TaiMed Biologics                           | Taiwan      | Assembly/Release – NA     |
|                         | Parainfluenza        | GS-441524          | Gilead Sciences                            | U.S.        | Replication – RdRp        |
|                         | SARS-CoV-1           | Bananin            | Medsintez Pharmaceutical                   | Russia      | NSP13 helicase            |
|                         | Мрох                 | Simeprevir         | Johnson & Johnson Innovative Medicine      | U.S.        | Assembly/Release – Capsid |

### Archived Antiviral Compounds for Non-COVID-19\* (N=20 of 46)

Clinical (n=0), Preclinical (n=20)

| Phase of<br>Development | Viral<br>Disease | Compound                          | Developer/Sponsor                                                           | Country        | Mechanism/Target          |
|-------------------------|------------------|-----------------------------------|-----------------------------------------------------------------------------|----------------|---------------------------|
|                         | Dengue           | 166347                            | PanThera Biopharma, LLC, Aiea, HI, USA                                      | U.S.           | Protease – NS2/3          |
|                         |                  | 2'-C-Methylcytidine (NM107)       | University of Porto, Utah State University Institute for Antiviral Research | Portugal, U.S. | Replication – RdRp        |
|                         |                  | 6A49                              | Univ. Texas Medical Branch                                                  | U.S.           | Protease – NS2/3          |
|                         |                  | 7-Fluoro MK608                    | Emory University                                                            | U.S.           | Replication – RdRp        |
|                         |                  | Allosteric NS5 inhibitor          | Novartis                                                                    | Switzerland    | Replication – RdRp        |
|                         |                  | ARDP0006                          | Univ. Texas Medical Branch                                                  | U.S.           | Protease – NS2/3          |
|                         |                  | ARDP0009                          | Univ. Texas Medical Branch                                                  | U.S.           | Protease – NS2/3          |
|                         |                  | Carnosine                         | Georgia State University, USA                                               | U.S.           | Protease – NS2/3          |
|                         |                  | Compound 14a in NITD manuscript   | Novartis                                                                    | Switzerland    | Replication – NS4b        |
| Preclinical             |                  | Compound 6 Entry inhibitor - NITD | Novartis                                                                    | Switzerland    | Entry - not yet confirmed |
| Frechnical              |                  | Compound 104                      | Heidelberg University                                                       | Germany        | Protease – NS2/3          |
|                         |                  | Compound 14                       | Nankai University                                                           | China          | Protease – NS2/3          |
|                         |                  | Compound 32                       | Heidelberg University                                                       | Germany        | Protease – NS2/3          |
|                         |                  | Compound 45a                      | Heidelberg University                                                       | Germany        | Protease – NS2/3          |
|                         |                  | Compound 7n                       | Georgetown University                                                       | U.S.           | Protease – NS2/3          |
|                         |                  | Compound C/D/F                    | Georgetown University                                                       | U.S.           | Protease – NS2/3          |
|                         |                  | Compound 1                        | Novartis Institute for Tropical Diseases (NITD), Singapore                  | Singapore      | Protease – NS2/3          |
|                         |                  | Compound 1/6/8 - diarylthioethers | Marburg/Heidelberg University                                               | Germany        | Protease – NS2/3          |
|                         |                  | Ltc1                              | University of Malaysia                                                      | Malaysia       | Protease – NS2/3          |
|                         |                  | MB21                              | Birla Institute of Technology and Science                                   | India          | Protease – NS2/3          |

\*As of December 18, 2024.

# Archived Antiviral Compounds for Non-COVID-19\* (N=12 of 46)

Clinical (n=0), Preclinical (n=12)

| Phase of<br>Development | Viral<br>Disease | Compound                     | Developer/Sponsor       | Country     | Mechanism/Target                     |
|-------------------------|------------------|------------------------------|-------------------------|-------------|--------------------------------------|
|                         | Dengue           | Methyl transferase inhibitor | Novartis                | Switzerland | Replication – RNA Methyl transferase |
|                         |                  | MK608                        | Merck                   | U.S.        | Replication – RdRp                   |
|                         |                  | Nelfinavir                   | Lund University, Sweden | Sweden      | Protease – NS2/3                     |
|                         |                  | NITD-618                     | Novartis                | Switzerland | Replication – NS4b                   |
|                         |                  | Policresulin                 | Zheijiang University    | China       | Protease – NS2/3                     |
| Proclinical             |                  | Potegrin 1                   | University of Malaysia  | Malaysia    | Protease – NS2/3                     |
| Frechnical              |                  | Protease inhibitor           | Heidelberg University   | Germany     | Protease – NS2/3                     |
|                         |                  | Retrocyclin 1                | University of Malaysia  | Malaysia    | Protease – NS2/3                     |
|                         |                  | RK-0404678                   | RIKEN, Japan            | Japan       | Replication – NS5                    |
|                         |                  | ST-148                       | SIGA                    | U.S.        | Assembly/Release – Capsid            |
|                         |                  | ST-610                       | SIGA                    | U.S.        | Replication – Helicase               |
|                         |                  | Thiazolidinone-peptide       | Heidelberg University   | Germany     | Protease – NS2/3                     |

#### Discontinued Clinical Antiviral Compounds\* (N=16) COVID-19 (n=5), Non-COVID-19 (n=11)

| Phase of<br>Development | Viral Disease        | Compound               | Developer/Sponsor                     | Country     | Mechanism/Target                                       |
|-------------------------|----------------------|------------------------|---------------------------------------|-------------|--------------------------------------------------------|
|                         | COVID-19             | Bemnifosbuvir**        | Atea Pharmaceuticals                  | U.S.        | Replication – RdRp                                     |
|                         |                      | BIT-225**              | Biotron                               | Australia   | Assembly/Release                                       |
|                         |                      | Galidesivir            | BioCryst Pharmaceuticals, NIAID       | U.S., U.S.  | Replication – RdRp                                     |
|                         |                      | Obeldesivir**          | Gilead Sciences                       | U.S.        | Replication – RdRp                                     |
|                         |                      | Valganciclovir**       | Roche                                 | Switzerland | Replication – DNA pol                                  |
|                         | Human Adenovirus A-G | Brincidofovir (Oral)** | Chimerix                              | U.S.        | Replication – DdDp                                     |
|                         |                      | Valganciclovir**       | Roche                                 | Switzerland | Replication – DNA pol                                  |
| Clinical                | Dengue               | AT-752**               | Atea Pharmaceuticals                  | U.S.        | Replication – DdRp                                     |
| Chinear                 |                      | Balapiravir**          | Roche                                 | Switzerland | Replication – RdRp                                     |
|                         |                      | Mosnodenvir**          | Johnson & Johnson Innovative Medicine | Belgium     | Replication DENV NS3 (Helicase) /NS4B (immune evasion) |
|                         | Yellow fever         | Galidesivir            | BioCryst Pharmaceuticals, NIAID       | U.S., U.S.  | Replication – RdRp                                     |
|                         | Influenza            | AL-794**               | Johnson & Johnson Innovative Medicine | Belgium     | Replication – Endonuclease                             |
|                         |                      | Flufirvitide-3**       | Autoimmune Technologies               | U.S.        | Entry – Flu HA                                         |
|                         |                      | Radavirsen**           | Sarepta Therapeutics                  | U.S.        | Replication – Translation                              |
|                         | Hendra virus         | Balapiravir**          | Roche                                 | Switzerland | Replication – RdRp                                     |
|                         | Nipah virus          | Balapiravir**          | Roche                                 | Switzerland | Replication – RdRp                                     |

#### Discontinued Preclinical Antiviral Compounds\* (N=7) COVID-19 (n=1), Non-COVID-19 (n=6)

| Phase of<br>Development | Viral Disease | Compound                                  | Developer/Sponsor        | Country     | Mechanism/Target             |
|-------------------------|---------------|-------------------------------------------|--------------------------|-------------|------------------------------|
| Preclinical             | COVID-19      | ISM036-076 PCC                            | Insilico Medicine        | Hong Kong   | Protease – 3CL pro           |
|                         | Dengue        | NITD - cyclic phosphoramidate compound 17 | Novartis                 | Switzerland | Replication – NS5 polymerase |
|                         |               | NITD008                                   | NITD, Singapore          | Singapore   | Replication – RdRp           |
|                         | Yellow fever  | NITD008                                   | NITD, Singapore          | Singapore   | Replication – RdRp           |
|                         | Zika          | NITD008                                   | NITD, Singapore          | Singapore   | Replication – RdRp           |
|                         | Dengue        | NITD203                                   | Novartis                 | Switzerland | Replication – NS5 polymerase |
|                         | Parainfluenza | BCX 2798                                  | BioCryst Pharmaceuticals | U.S.        | Entry – parainfluenza HN     |

#### Select References for "Promising" Novel Clinical Antiviral Compounds\*

These were cited in addition to information provided by Airfinity.

| Compound                      | Selected References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EDP-235                       | <ul> <li>Encanta Pharmaceuticals. Enanta Pharmaceuticals Announces Positive Data from a Phase 1 Clinical Study of EDP-235, its Oral 3CL Protease Inhibitor Designed for the Treatment of COVID-19.<br/>Accessed: July 29, 2022.</li> <li>Encanta Pharmaceuticals. Molecular Basis for the Antiviral Action of EDP-235: A Potent and Selective SARS-CoV-2 3CLpro Inhibitor. Accessed: April 4, 2022.</li> <li>Encanta Pharmaceuticals. Enanta Pharmaceuticals Reports Positive Topline Results from Phase 2 SPRINT Trial Evaluating EDP-235 in Standard Risk Patients with COVID-19. Accessed: May 8, 2023.</li> </ul>                                                                                                                                                                                                                                                                                                              |
| GST-HG171                     | <ul> <li>Zhang H, et al. Phase I study, and dosing regimen selection for a pivotal COVID-19 trial of GST-HG171. Antimicrob Agents Chemother68:e01115-23. <a href="https://doi.org/10.1128/aac.01115-23">https://doi.org/10.1128/aac.01115-23</a>. Accessed: April 10, 2024.</li> <li>ClinicalTrials.gov. Study of GST-HG171/Ritonavir Compared With Placebo in Patients With Mild to Moderate COVID-19. Accessed: April 10, 2024.</li> <li>Chinese Clinical Trial Registry. <u>A randomized, controlled clinical study to evaluate the efficacy and safety of GST-HG171 tablets in combination with ritonavir in adult subjects with mild/moderate COVID-19. Accessed: April 10, 2024.</u></li> </ul>                                                                                                                                                                                                                              |
| CD388                         | <ul> <li>Sandison T, et al. ID Week; Los Angeles, CA, USA. Poster 573. <u>CD388, A Novel Drug-Fc Conjugate (DFC), Demonstrates Prophylactic Activity in an Influenza Human Challenge Model</u>.<br/>Accessed: April 18, 2025.</li> <li>Cidara Therapeutics. <u>Cidara Therapeutics Announces Two Presentations on Drug-Fc Conjugate, CD388, at IDWeek 2024</u>. Accessed: April 18, 2025.</li> <li>Döhrmann S, et al. bioRxiv 2024. 06.04.597465. CD388: A universally protective Drug-Fc Conjugate that targets influenza virus neuraminidase. <u>https://doi.org/10.1101/2024.06.04.597465</u>.<br/>Accessed: April 18, 2025.</li> </ul>                                                                                                                                                                                                                                                                                         |
| lbuzatrelvir<br>(PF-07817883) | <ul> <li>Tuttle J, et al. <u>Discovery of PF-07817883</u>: A Next Generation Oral Protease Inhibitor for the Treatment of COVID-19. ACS First Time Disclosures (#3933296). Presented August 16, 2023.</li> <li>(Available to American Chemical Society members).</li> <li>ClinicalTrials.gov. A Study to Understand the Effect and Safety of the Study Medicine PF-07817883 in Adults Who Have Symptoms of COVID-19 But Are Not Hospitalized. Accessed: April 10, 2024.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| QLS1128                       | • ClinicalTrials.gov. A Phase 2 Study to Evaluate the Efficacy and Safety of QLS1128 Orally in Symptomatic Participants With Mild to Moderate COVID-19. Accessed: April 10, 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SHEN26                        | <ul> <li>Chen Q., et al., Org Process Res Dev. Optimized Kilogram-Scale Synthesis and Impurity Identification of SHEN26 (ATV014) for Treating COVID-19. <a href="https://doi.org/10.1021/acs.oprd.3c00248">https://doi.org/10.1021/acs.oprd.3c00248</a>.<br/>Accessed: November 20, 2023.</li> <li>Zhou Q., et al., Signal Transduction and Targeted Therapy. Preclinical characterization and anti-SARS-CoV-2 efficacy of ATV014: an oral cyclohexanecarboxylate prodrug of 1'-CN-4-aza-7,9-dideazaadenosine C-nucleoside. <a href="https://doi.org/10.1038/s41392-023-01310-0">https://doi.org/10.1038/s41392-023-01310-0</a>. Accessed: January 12, 2023.</li> <li>ClinicalTrials.gov. <u>A Phase 1 Study of SHEN26 Capsule in Healthy Participants</u>. Accessed: April 10, 2024.</li> <li>ClinicalTrials.gov. <u>Study of SHEN26 Capsule in Patients With Mild to Moderate COVID-19</u>. Accessed: April 10, 2024.</li> </ul> |

INTREPID ALLIANCE

#### Select References for "Promising" Novel Clinical Antiviral Compounds\* (cont'd)

These were cited in addition to information provided by Airfinity.

| Compound               | Selected References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STI-1558               | <ul> <li>Sorrento Therapeutics. <u>OVYDSO STI-1558</u>. Accessed: April 10, 2024.</li> <li>NIH National Library of Medicine. <u>Olgotrelvir (sodium)   C22H29N4NaO75   CID 166157330</u>. Accessed: April 10, 2024.</li> <li>Sorrento Therapeutics. <u>Sorrento Releases Positive Results from a Phase 1b Study in China in COVID-19 Patients and is Ready for Pivotal Phase 3 trials with OVYDSO™ (STI-1558), an Oral Mpro Inhibitor as a Standalone Treatment for COVID-19 without the Need for Ritonavir Boosting. Accessed: January 9, 2023.</u></li> <li>Sorrento Therapeutics. <u>Sorrento Announces the Full Enrollment of the Pivotal Phase 3 Trial with Olgotrelvir (OVYDSOTM) (STI-1558), a Second Generation Oral Mpro Inhibitor, as a Standalone Treatment for COVID-19. Accessed: June 26, 2023.</u></li> <li>Sorrento Therapeutics. <u>Sorrento Announces Phase 3 Trial Met Primary Endpoint and Key Secondary Endpoint in Mild or Moderate COVID-19 Adult Patients Treated with Ovydso (Olgotrelvir), an Oral Mpro Inhibitor as a Standalone Treatment for COVID-19. Accessed: September 12, 2023.</u></li> </ul>                                                      |
| TG-1000                | <ul> <li>TaiGen Biotechnology. <u>TaiGen's New Single-Dose Flu Drug Targets Global Markets</u>. Accessed: April 18, 2025.</li> <li>TaiGen Biotechnology. <u>NDA Submitted for TaiGen Influenza Antiviral TG-1000 in Mainland China</u>. Accessed: April 18, 2025.</li> <li>TaiGen Biotechnology. <u>TaiGen Successfully Completes TG-1000 Phase III Study</u>. Accessed: April 18, 2025.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ZX-7101A               | <ul> <li>Wang H, et al. Efficacy and safety of ZX-7101A, an inhibitor of influenza cap-dependent endonuclease, in adults with uncomplicated influenza: a randomized, double-blind, placebo-controlled phase 2/3 trial. Clinical Microbiology and Infection. Clinical Microbiology and Infection. 2025 Feb; 31(2): 274-281. <a href="https://doi.org/10.1016/j.cmi.2024.10.020">https://doi.org/10.1016/j.cmi.2024.10.020</a>. Accessed: April 18, 2025.</li> <li>Wu J, et al. Safety, tolerability, and pharmacokinetics of a novel anti-influenza agent ZX-7101A tablets in healthy chinese participants: A first-in-human phase I clinical study. International Journal of Antimicrobial Agents. 2025 Jan; 65(1):107381. <a href="https://doi.org/10.107381">https://doi.org/10.1016/j.ijantimicag.2024.107381</a>. Accessed: April 18, 2025.</li> </ul>                                                                                                                                                                                                                                                                                                                            |
| GP681                  | <ul> <li>ClinicalTrials.gov. Evaluation the Safety and Tolerance of GP681 Tablets in Healthy Subjects. Accessed: April 10, 2024.</li> <li>ClinicalTrials.gov. To Assess the Efficacy of GP681 Tablet Versus Placebo in Patients With Acute Uncomplicated Influenza Virus Infection. Accessed: April 10, 2024.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Onradivir<br>(ZSP1273) | <ul> <li>Chen X., et al. Pharmaceuticals (Basel). Preclinical Study of ZSP1273, a Potent Antiviral Inhibitor of Cap Binding to the PB2 Subunit of Influenza A Polymerase. <a href="https://doi.org/10.3390/ph16030365">https://doi.org/10.3390/ph16030365</a>. Accessed: April 10, 2024.</li> <li>Hu Y., et al. Expert Opinion on Investigational Drugs. Single and multiple dose pharmacokinetics and safety of ZSP1273, an RNA polymerase PB2 protein inhibitor of the influenza A virus: a phase 1 double-blind study in healthy subjects. <a href="https://doi.org/10.1080/13543784.2021.1994944">https://doi.org/10.1080/13543784.2021.1994944</a>. Accessed: April 10, 2024.</li> <li>Yang Z., et al. Lancet. Safety and efficacy of onradivir in adults with acute uncomplicated influenza A infection: a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. <a href="https://doi.org/10.1016/s1473-3099(23)00743-0">https://doi.org/10.1080/13543784.2021.1994944</a>. Accessed: April 10, 2024.</li> <li>ClinicalTrials.gov. <u>A Study of ZSP1273 Tablets in Patients With Acute Uncomplicated Influenza A</u>. Accessed: April 10, 2024.</li> </ul> |
| V-7404                 | <ul> <li>Kankam M., et al. American Society for Microbiology. <u>A Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of Single and Multiple Oral Doses of V-7404 in Healthy Adult Volunteers</u>.<br/>Accessed: April 10, 2024.</li> <li>NIH GSRS. <u>V-7404 (nih.gov)</u>. Accessed: April 10, 2024.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *As of Dece            | ember 18, 2024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





# **Glossary of Terms**



#### **Glossary of Terms**

- ADME: absorption, distribution, metabolism, and excretion
- Approved Antiviral-Indication Expansion: antiviral approved for one or more viral disease indications (e.g., cidofovir, favipiravir, molnupiravir, remdesivir, valganciclovir)
- 'Archived' Compound: clinical compound where development has paused or no recent information available from the past 5 years
- CRO: contract research organization
- **'Discontinued' Compound:** clinical compound where development has stopped for known reasons (e.g., change in business strategy, lack of efficacy or funding, low enrollment, PK variability preventing effective dosing, other)
- 'Exclude' Compound: clinical compound with known disqualifying data related to safety and tolerability, efficacy, developability, chemical structure, etc.
- FIH: first-in-human
- HI: high-income
- IND: Investigational New Drug
- Investigational Antiviral-Indication Expansion: antiviral in clinical development, not yet approved (e.g., AT-752, filociclovir, galidesivir, GC736, GRL0167, NV-387-T, obeldesivir, rupintrivir)
- LMI: lower-middle income
- MOA: mechanism of action
- O.N.A.: other national authority
- PD: pharmacodynamic
- PK: pharmacokinetic
- POC: proof-of-concept



#### Glossary of Terms (cont'd)

- Preclinical Compounds with only preclinical data and no clinical data:
  - **Hit** high-throughput or compound library screening hit, initial antiviral activity requiring significant optimization. Limited or no *in vitro* data available supporting antiviral mechanism of action (MOA).
  - Early Lead limited Structure-Activity Relationship (SAR), antiviral activity associated with MOA, may have limited *in vitro/in vivo* pharmacokinetic data reported.
  - Late Lead potency consistent with candidate quality for the specific MOA, more extensive *in vitro* characterization (e.g. ADME profile, activity against clinically relevant virus strains/isolates), *in vivo* PK and/or animal efficacy model data reported.
  - **Potential Candidate** *in vivo* efficacy and safety dataset consistent with preparation for FDA IND (or similar) submission. Compound has been reported by developer as a pipeline clinical candidate and/or in IND (or similar) enabling studies.
  - Archived progress on the compound has been stopped (timeframe stopped, 5 years); antiviral evidence is only computational; previously optimized drug from another antiviral/other indication that only has weak activity.
  - **Discontinued** compound progression has been stopped for known reasons; for example, compound failed preclinical "IND" toxicology, change in business strategy, etc. May be useful to inform new screening or medicinal chemistry efforts.
- Preclinical Exploratory: Investigational ("unapproved") and Approved antivirals exploring antiviral activity against a different virus from the Investigational/Approved antiviral indication
- 'Promising' Compound: clinical compound that aligns with 100 Days Mission goals and/or has been registered and approved for established viral diseases
- S.A.: stringent authority
- SAD/MAD: Single Ascending Dose/Multiple Ascending Dose
- UMI: upper-middle income
- 'Watch & Wait' Compound: clinical compound that has FIH or POC studies just starting/ongoing or data are available for a completed study or unable to make a data-driven evaluation at the time of the analysis



# Interested in engaging with us?

We welcome all feedback through <u>our online</u> <u>portal</u>. As with previous listings, developers are invited to submit non-confidential information on their compound candidates. All reports are updated quarterly.

For more information, contact <u>nina@intrepidalliance.org</u>.

intrepidalliance.org



linkedin.com/company/intrepid-alliance

