

APRIL 29, 2024

Antiviral Clinical Development Landscape and Promising Clinical Compounds

JIM DEMAREST

RICHARD MACKMAN

LEE RUGGIERO

JOHN C. POTTAGE, JR.

INTREPID Alliance: Antiviral Clinical Development Landscape - Second Edition. 29 April 2024. Available at interpidalliance.org.

INTREPID Alliance Pandemic Preparedness

INTREPID Alliance Landscaping Activities

- Highlight strengths and weaknesses of the antiviral drug development pipeline for potential pandemic viral pathogens
- Support the 100 Days Mission (100DM) which seeks to identify two 'Phase 2 ready' therapeutic candidates against each of the identified viral pathogen families of greatest pandemic potential

Landscape Analysis

- A living analysis of the antiviral landscape that will be updated based on emerging data
- Derived from Airfinity database information on diverse compounds against 12 viral families (See Slide 3)
- Focused on direct acting small molecule antivirals

Timing and Publication on Website

- First Edition: Initial triage and selection of clinical compounds with favorable properties and antiviral mechanism of action - January 2024
- Second Edition: Detailed review and identification of most Promising Clinical and Approved-Indication Expansion Compounds - April 2024
- Antiviral Preclinical Development Landscape release June 2024
- Quarterly Updates Ongoing

Landscape Analysis Components

Airfinity monitors 12 viral families that pose the greatest risk of pandemic potential.

With thanks to Airfinity for its contributions to the presentation.

Baseline Information Identified:

- Diverse Compound/Indications by Viral Family and Disease
- Phase of Development (e.g., Preclinical through Phase 4, Approved)
- MOA/Target
- Route of Administration
- Developer or Sponsor (Type, Location)
- Clinical Trials (Links, Status, Trial Site Locations)

Figures & Tables:

- 12 Viral Families of Interest for Pandemic Preparedness
- Total Pipeline by Viral Family
- Promising Clinical & Indication-Expansion Compounds
- Compounds by Viral Family and Phase of Development
- Compounds by MOA/Target and Viral Family
- Phase of development vs viral disease for each MOA
- Developer or Sponsor
- ► Emerging information is reviewed on a monthly basis.
- ► Antiviral Landscape updated on the INTREPID Alliance website on a quarterly basis.

INTREPID Alliance Clinical Antiviral Landscape: Clinical Antiviral Compounds Analysis (January 2024)*

- Initial analysis of the clinical antiviral landscape data as of November 16, 2023 was posted on the INTREPID website on <u>January 24, 2024</u>.
 - Two rounds of rigorous scientific triage on 300 clinical phase entries reduced the number to 61 distinct compounds associated with 80 compound/indication pairings.

Initial Analysis

Two Rounds of Scientific Triage

61 Distinct Compounds

Exclusion Criteria:

- Antibodies
- · Antibiotics & Anti-infectives
- · Cell-based Therapy
- · HIV or HCV-specific
- · Host Targets (incl. Imm. Mod.)
- Natural Products/
 Nutraceuticals/Herbals
- Vaccines

Inclusion Criteria:

- Known Antiviral MOA
- In Vitro/In Vivo Activity
- Small Molecules
- Peptides
- RNA-based

- SAD/MAD Data
- FIH Completed
- No Major Safety Signals

^{*}As of November 16, 2023

INTREPID Alliance Clinical Antiviral Landscape: Clinical Antiviral Compounds Analysis (March 2024)*

- Further analysis investigated the clinical landscape with data updates from March 2024:
 - Novel Clinical Phase Antiviral Compounds (e.g., not yet approved for a virus disease indication)
 - Approved-Indication Expansion Antiviral Compounds (e.g., initial approval for one viral indication and under evaluation for other viral indication(s))
- Additional scientific analysis** of only the novel compounds categorized them as follows:
 - Promising
 - Watch & Wait
 - Archived
- Based on these analyses of the March 2024 data, there are 60 distinct antiviral compounds in the antiviral clinical development landscape.

Criteria* for Promising Clinical Antiviral Compound Analysis (March 2024)**

- FIH trial completed & data at adequate doses and dosing duration available
- POC study ongoing or completed & data available
 - POC demonstration via viral endpoint, symptom alleviation, etc.
 - POC in animal model may be applicable for certain viral diseases where clinical POC is not feasible
- Adequate PK/PD to support Phase 2/3 dose selection and route of administration
- Safety and tolerability consistent with the target dose/exposure and no difficult-to-manage clinical safety signals
- Other criteria such as chemical structure, synthesis, scalability, etc. are taken into account where data are available.

^{*}In addition to the collective antiviral drug development experience of INTREPID member companies, guidance documents from Regulatory Authorities such as the US FDA routinely used by drug developers, and publicly available Target Product Profiles such as the NIH/NIAID Target Product Profiles for Antivirals, were used to inform the clinical phase triage.

^{**}As of March 8, 2024; FIH: first-in-human; POC: proof-of-concept; PK/PD: pharmacokinetic/pharmacodynamic; CMC: chemistry, manufacturing, and controls

Categories for Clinical Antiviral Compound Analysis (March 2024)*

- Promising (e.g., meets "Promising Criteria")
 - 100DM Ready
 - Registration & Approval for established viral diseases

Watch & Wait

- FIH or POC Study just starting/ongoing or data are unavailable for a completed study
- Unable to make a data-driven evaluation

Archived

Development paused, no recent information >5 years

Exclude

Known disqualifying data related to safety and tolerability, efficacy, developability, chemical structure, etc.

Summary of Updated Antiviral Clinical Development Landscape with Promising Clinical Compounds (March 2024)*

- Identified 60 distinct antiviral clinical compounds
 - 19 Approved for COVID-19 and/or Influenza; 0 for other viral diseases
 - 11 by Stringent Authority (S.A.)
 - 7 by Other National Authority (O.N.A.)
 - 1 by S.A. and O.N.A. (favipiravir)
 - 41 Novel compounds
- There are 78 indications being studied from the 60 distinct antiviral compounds**
 - 23 Approvals for COVID-19 and/or Influenza
 - 11 approved for COVID-19
 - 8 for Influenza
 - 4 approved for COVID-19 and Influenza
 - 7 of the 19 distinct Approved antiviral compounds are being evaluated for 13 other viral indications
 - **42** indications for Novel compounds; 1 compound being evaluated for two indications
- Novel Promising and Watch & Wait compounds target protease (16), entry (12), replication (9), and assembly-release (1).

^{*}As of March 8, 2024; **Some compounds are being evaluated for more than 1 viral indication © 2024 INTREPID Alliance. All Rights Reserved.

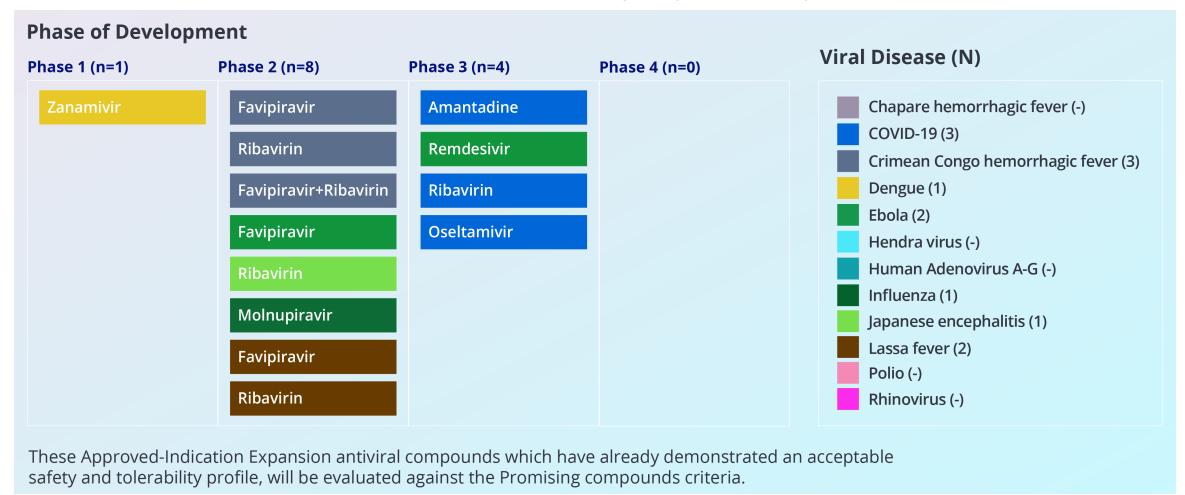
INTREPID Alliance Antiviral Clinical Development Landscape: Overview of Priority Viral Families*

As of March 8, 2024, the 60 clinical phase and approved antiviral compounds fall into 8 of 12 viral families with greatest risk of pandemic potential.

Viral Family	Adenoviridae	Arenaviridae	Coronaviridae	Filoviridae	Flaviviridae	Hantaviridae
Indication	Human Adenovirus A-G	Lassa fever Chapare hemorrhagic fever	COVID-19	Ebola	Dengue Japanese encephalitis	X
Viral Family	Nairoviridae	Orthomyxoviridae	Paramyxoviridae	Peribunyaviridae	Picornaviridae	Togaviridae
∠ 55				,		rogaviriaac

X = absence of clinical phase or approved antivirals

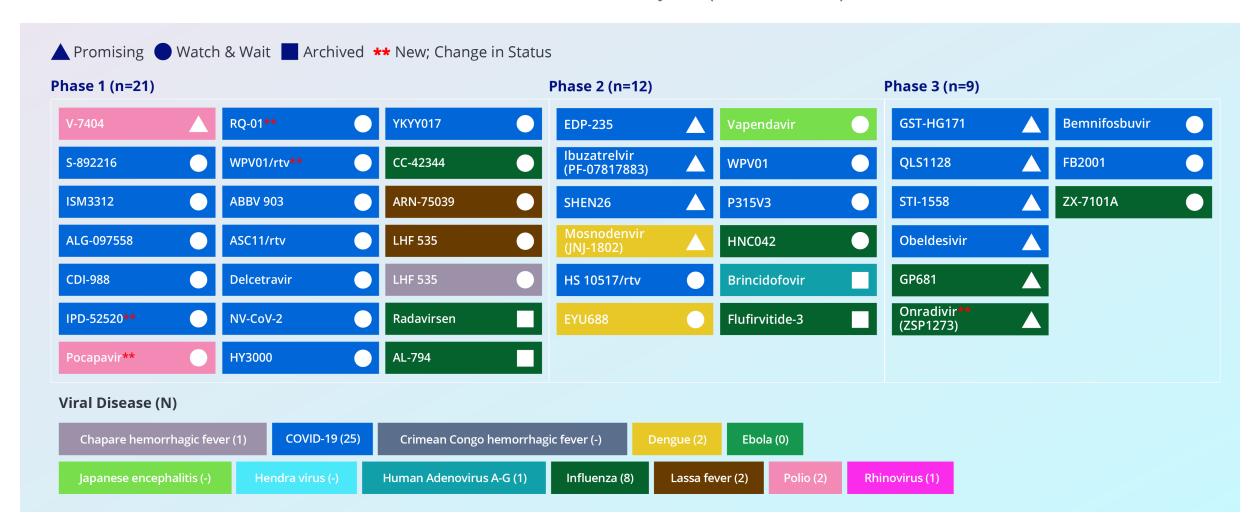
Static View of Interactive Antiviral Clinical Development Pipeline: INTREPID Alliance Analysis (March 2024)*



^{*}As of March 8, 2024; WHO-defined Other National Authority (https://www.who.int/publications/m/item/list-of-transitional-wlas)
Favipiravir also has S.A. approval

Approved-Indication Expansion Clinical Antivirals (Previous Approval for COVID-19 and/or Influenza) (N=13)

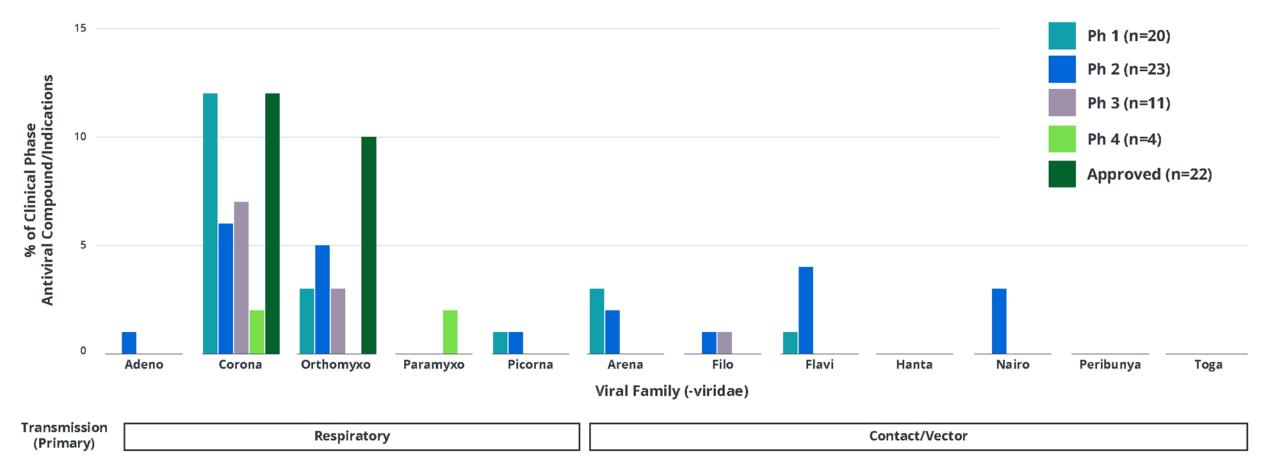
INTREPID Alliance Analysis (March 2024)*



^{*}March 8, 2024 data with "Promising" Analysis March 2024

Novel Clinical Antivirals (Promising, Watch & Wait, Archived) (N=41)

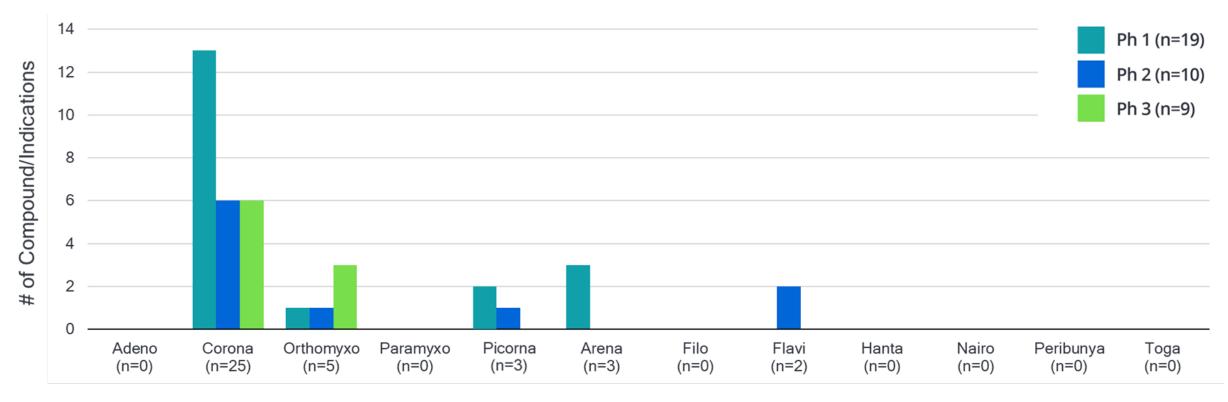
INTREPID Alliance Analysis (March 2024)*



^{*}March 8, 2024 data with "Promising" Analysis March 2024

The Majority of Clinical Phase Antiviral Compound/Indications Are Targeting Coronaviruses and Orthomyxoviruses*

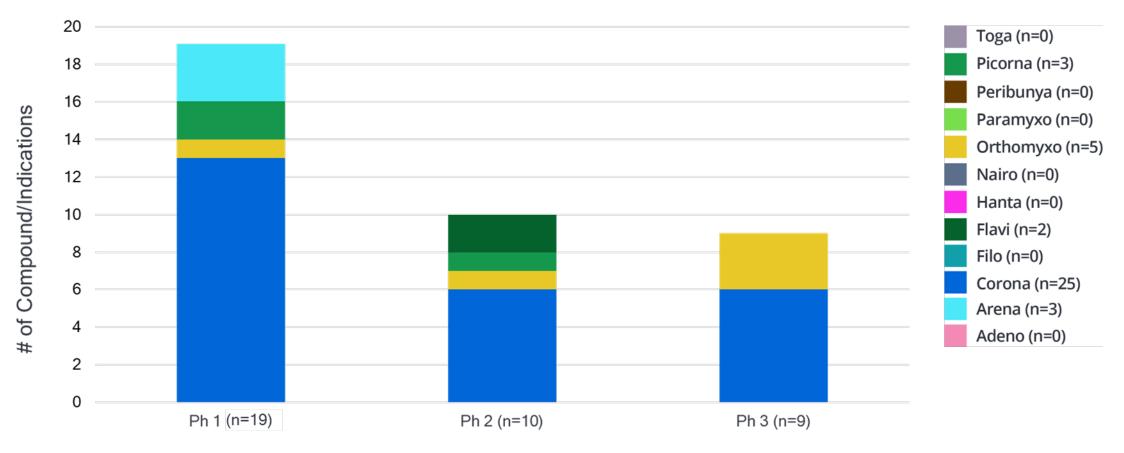
% Clinical Phase Antiviral Compound/Indications by Virus Family (N=80)



^{*}As of November 16, 2023; March 2024 data are forthcoming

"Promising" Compounds Analysis (March 2024)*

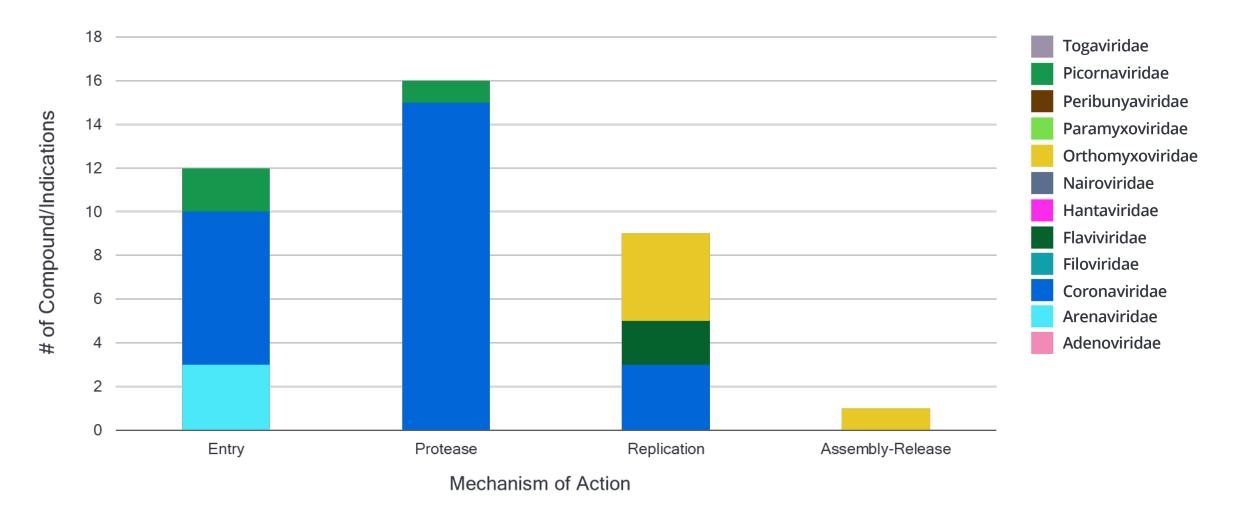
Novel Compounds (Promising and Watch & Wait) by Virus Family (N=38)


Viral Family (-viridae)

Transmission		
Iransmission	Pospiratory	Contact Master
(Drimary)	Respiratory	Contact/vector
(Primary)		

"Promising" Compounds Analysis (March 2024)*

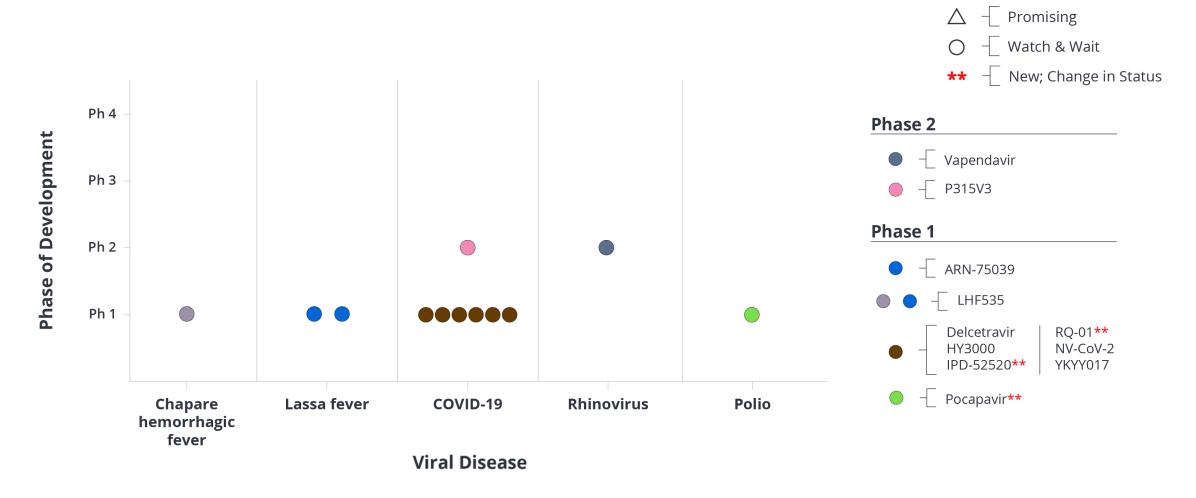
Novel Compound/Indications (Promising and Watch & Wait) by Phase of Development (N=38)



Phase of Development (n)

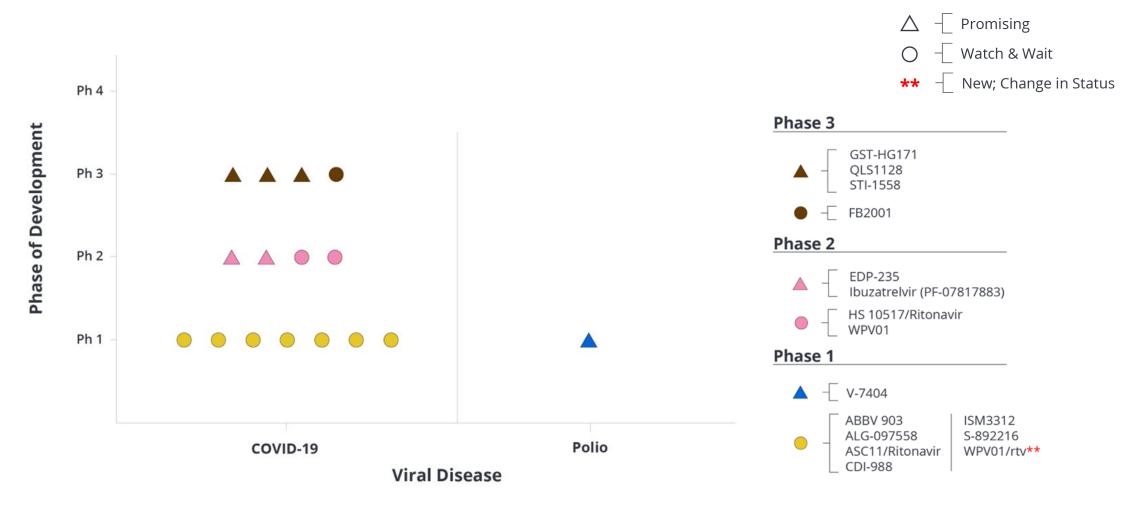
"Promising" Compounds Analysis (March 2024)*

Novel Compound/Indications (Promising and Watch & Wait) by MOA and Viral Family (N=38)



Novel Clinical Antiviral Entry Inhibitors*

Novel Compound/Indications (Promising, Watch & Wait (N=12))



^{*}As of March 8, 2024; Attachment, Capsid (Rhinovirus), Fusion

Novel Clinical Antiviral Protease Inhibitors*

Novel Compound/Indications (Promising, Watch & Wait, Archived (N=16))

^{*}As of March 8, 2024; Mpro (Coronavirus and Enterovirus)

Novel Clinical Antiviral Replication Inhibitors*

Novel Compound/Indications (Promising, Watch & Wait (N=9))

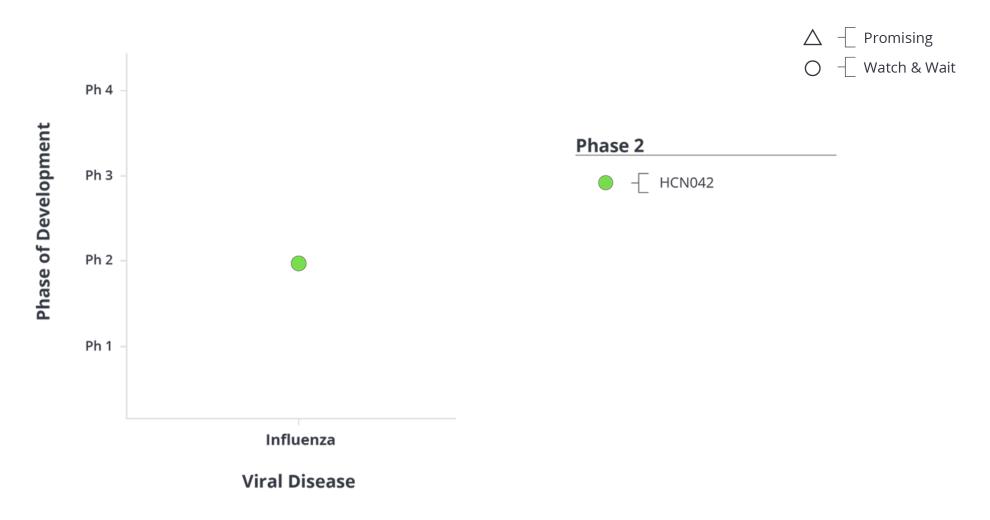
- Obeldesivir (GS-5245)
- Bemnifosbuvir
- Onradivir (ZSP1273)**
- ── ZX-7101A

Phase 2

- √ SHEN26
- Mosnodenvir (JNJ-1802)
- EYU688 (NITD-688)

Phase 1

- CC-42344



© 2024. All Rights Reserved.

Novel Clinical Antiviral Assembly-Release Inhibitors*

Novel Compound/Indications (Promising, Watch & Wait, Archived (N=1))

Summary of Updated Antiviral Clinical Development Landscape with Promising Clinical Compounds (March 2024)*

- Identified 60 distinct antiviral clinical compounds
 - 19 Approved for COVID-19 and/or Influenza; 0 for other viral diseases
 - 11 by Stringent Authority (S.A.)
 - 7 by Other National Authority (O.N.A.)
 - 1 by S.A. and O.N.A. (favipiravir)
 - 41 Novel compounds
- There are 78 indications being studied from the 60 distinct antiviral compounds**
 - 23 Approvals for COVID-19 and/or Influenza
 - 11 approved for COVID-19
 - 8 for Influenza
 - 4 approved for COVID-19 and Influenza
 - 7 of the 19 distinct Approved antiviral compounds are being evaluated for 13 other viral indications
 - **42** indications for Novel compounds; 1 compound being evaluated for two indications
- Novel Promising and Watch & Wait compounds target protease (16), entry (12), replication (9), and assembly-release (1).

^{*}As of March 8, 2024; **Some compounds are being evaluated for more than 1 viral indication © 2024 INTREPID Alliance. All Rights Reserved.

Supplemental Information

12 Compounds Approved by a Stringent Regulatory Authority (S.A.)*

COVID-19 (n=4), Influenza (n=8)

Compound	Developer/Sponsor	Mechanism/Target
COVID-19		
Ensitrelvir (S-217622)	Shionogi	Protease – Mpro
Molnupiravir (MK-4482)	Merck & Co./Merck Sharp & Dohme (MSD), Ridgeback Biotherapeutics	Replication – RdRp
Nirmatrelvir/Ritonavir	Pfizer	Protease – Mpro
Remdesivir	Gilead Sciences	Replication – RdRp
INFLUENZA		
Amantadine	Novartis	Entry – Proton Channel M2
Baloxavir Marboxil	Shionogi, Roche	Replication – Endonuclease
Favipiravir**	FUJIFILM Toyama Chemical	Replication – RdRp
Laninamivir	Daiichi Sankyo, Biota Pharmaceuticals	Assembly/Release – NA
Oseltamivir	Roche	Assembly/Release – NA
Peramivir	BioCryst Pharmaceuticals	Assembly/Release – NA
Rimantadine	Allergan	Entry – Proton Channel M2
Zanamivir***	GlaxoSmithKline (GSK)	Assembly/Release – NA

^{*}As of March 8, 2024; WHO defined Stringent Authority (https://www.who.int/publications/m/item/list-of-transitional-wlas);

^{**}Favipiravir also has O.N.A. approval; ***Zanamivir also has Dengue study via Investigator Sponsored Study

8 Compounds Approved by Other National Authority (O.N.A.)*

COVID-19 (n=5), Influenza (n=0), COVID-19 & Influenza (n=3)

Compound	oound Developer/Sponsor		
COVID-19			
Armudia	HeNan Sincere Biotech, Zhengzhou Granlen PharmaTech, Genuine Biotech,	Poplication PdPn	
Azvudine	Fosun Pharma	Replication – RdRp	
Favipiravir**	Promomed, R-Pharm	Replication – RdRp	
Leritrelvir (RAY1216)	Guangdong Zhongsheng Pharmaceutical	Protease – Mpro	
Simnotrelvir/Ritonavir	Simcere Pharmaceutical, Shanghai Institute of Materia Medica (SIMM),	Protease – Mpro	
Similar civii/itteoriavii	Jiangsu Simcere Pharmaceutical		
Mindeudesivir (VV116) Shanghai Junshi Biosciences		Replication – RdRp	
INFLUENZA			
-	-	-	
COVID-19 & INFLUENZA			
Enisamium (VR17-04)	Farmak	Replication – RdRp	
Triazavirin	Medsintez Pharmaceutical	Replication – RdRp	
Umifenovir	Pharmstandard	Entry – Fusion	

^{*}As of March 8, 2024; WHO defined Other National Authority (https://www.who.int/publications/m/item/list-of-transitional-wlas);

^{**}Favipiravir also has S.A. approval

11 "Promising" Novel Clinical Antiviral Compounds*

COVID-19 (n=7), Influenza (n=2), Dengue (n=1), Polio (n=1)

Compound	Developer/Sponsor	Country	Mechanism/Target	Phase of Development	Viral Disease
EDP-235	Enanta Pharmaceuticals	U.S.	Protease - Mpro	2	COVID-19
GST-HG171	Fujian Cosunter Pharmaceutical	China	Protease - Mpro	3	COVID-19
Obeldesivir (GS-5245)	Gilead Sciences	U.S.	Replication - RdRp	3	COVID-19
Ibuzatrelvir (PF-07817883)	Pfizer	U.S.	Protease - Mpro	2	COVID-19
QLS1128	Qilu Pharmaceutical	China	Protease - Mpro	3	COVID-19
SHEN26	Kexing Biopharm	China	Replication - RdRp	2	COVID-19
STI-1558	Sorrento Therapeutics	U.S.	Protease - Mpro	3	COVID-19
Mosnodenvir (JNJ-1802)	Janssen Pharmaceuticals	Belgium	Replication –DENV NS4B	2	Dengue
GP681	Jiangxi Qingfeng Pharmaceutical	China	Replication - Endonuclease	3	Influenza
Onradivir (ZSP1273)	Raynovent	China	Replication - DdRp	2	Influenza
V-7404	ViroDefense, Pfizer	U.S.	Protease - EV 3C pro	1	Polio

^{*}As of March 8, 2024

"Watch & Wait" Novel Clinical Antiviral Compounds (N=13 of 27)*

COVID-19 (n=9), Influenza (n=1), Dengue (n=1), Rhinovirus (n=1), Polio (n=1)

Compound	Developer/Sponsor	Country	Mechanism/Target	Phase of Development	Viral Disease
ALG-097558	Aligos Therapeutics	U.S.	Protease - Mpro	1	COVID-19
Bemnifosbuvir	Atea Pharmaceuticals	U.S.	Replication - RdRp	3	COVID-19
CDI-988	CoCrystal Pharma	U.S.	Protease - Mpro	1	COVID-19
HS 10517/Ritonavir	Abbott Laboratories, AbbVie, Gilead Sciences,	U.S., U.S., China	Protease - Mpro	2	COVID-19
	Jiangsu Hansoh Pharmaceutical				
IPD-52520**	IAVI	U.S.	Entry	1	COVID-19
ISM3312	Insilico Medicine	Hong Kong	Protease - Mpro	1	COVID-19
RQ-01**	Red Queen Therapeutics	U.S.	Entry	1	COVID-19
S-892216	Shionogi	Japan	Protease - Mpro	1	COVID-19
WPV01/rtv**	Westlake University	China	Protease - Mpro	1	COVID-19
EYU688 (NITD-688)	Novartis	Switzerland	Replication - NS4B	2	Dengue
CC-42344	CoCrystal Pharma	U.S.	Replication - Flu A Pol	1	Influenza
Vapendavir	Vaxart, Altesa Biosciences	U.S., U.S.	Entry - Capsid	2	Rhinovirus
Pocapavir**	ViroDefense	U.S.	Entry - Capsid	1	Polio

© 2024. All Rights Reserved.

^{*}As of March 8, 2024; **New Addition

"Watch & Wait" Novel Clinical Antiviral Compounds (N=14 of 27)*

COVID-19 (n=9), Influenza (n=2), Lassa fever (n=2), Chapare hemorrhagic fever (n=1)

Compound	Developer/Sponsor	Country	Mechanism/Target	Phase of Development	Viral Disease
LHF 535**	Kineta	U.S.	Entry - Fusion	1, 1	Chapare hemorrhagic
					fever; Lassa fever
ABBV 903	AbbVie	U.S.	Protease - Mpro	1	COVID-19
ASC11/Ritonavir	Ascletis Pharma	China	Protease - Mpro	1	COVID-19
Delcetravir	Esfam Biotech	Australia	Entry - Attachment	1	COVID-19
FB2001	Frontier Biotechnologies	China	Protease - Mpro	3	COVID-19
HY3000	Hybio Pharmaceutical	China	Entry - Fusion	1	COVID-19
NV-CoV-2	NanoViricides	U.S.	Entry - Attachment	1	COVID-19
P315V3	Institute of Microbiology of the Chinese	China	Entry - Fusion	2	COVID-19
	Academy of Sciences				
WPV01	Westlake University	China	Protease - Mpro	2	COVID-19
YKYY017	Yuekang Pharmaceutical	China	Entry - Fusion	1	COVID-19
HNC042	Guangzhou Henovcom Bioscience Co. Ltd.	China	Assembly/Release - NA	2	Influenza
ZX-7101A	Nanjing Zenshine Pharmaceuticals	China	Replication - Endonuclease	3	Influenza
ARN-75039	Arisan Therapeutics	U.S.	Entry - Fusion	1	Lassa fever

^{*}As of March 8, 2024; **LHF535 under evaluation for two Viral Diseases

4 "Archived" Novel Clinical Antiviral Compounds*

Influenza (n=3), Human Adenovirus A-G (n=1)

Compound	Developer/Sponsor	Country	Mechanism/Target	Phase of Development	Viral Disease
Brincidofovir	Chimerix	U.S	Replication - DdDp	2	Human Adenovirus A-G
AL-794	Janssen Pharmaceuticals	Belgium	Replication - Endonuclease	1	Influenza
Flufirvitide-3	Autoimmune Technologies	U.S.	Entry - Flu HA	2	Influenza
Radavirsen	Sarepta Therapeutics	U.S.	Replication - translation	1	Influenza

Select References for "Promising" Novel Clinical Antiviral Compounds*

These were cited in addition to information provided by Airfinity.

Compound	Selected References
EDP-235	 Encanta Pharmaceuticals. Enanta Pharmaceuticals Announces Positive Data from a Phase 1 Clinical Study of EDP-235, its Oral 3CL Protease Inhibitor Designed for the Treatment of COVID-19. Accessed: July 29, 2022. Encanta Pharmaceuticals. Molecular Basis for the Antiviral Action of EDP-235: A Potent and Selective SARS-CoV-2 3CLpro Inhibitor. Accessed: April 4, 2022. Encanta Pharmaceuticals. Enanta Pharmaceuticals Reports Positive Topline Results from Phase 2 SPRINT Trial Evaluating EDP-235 in Standard Risk Patients with COVID-19. Accessed: May 8, 2023.
GST-HG171	 Zhang H, et al. Phase I study, and dosing regimen selection for a pivotal COVID-19 trial of GST-HG171. Antimicrob Agents Chemother68:e01115-23. https://doi.org/10.1128/aac.01115-23. Accessed: April 10, 2024. ClinicalTrials.gov. Study of GST-HG171/Ritonavir Compared With Placebo in Patients With Mild to Moderate COVID-19. Accessed: April 10, 2024. Chinese Clinical Trial Registry. Arandomized, controlled clinical study to evaluate the efficacy and safety of GST-HG171 tablets in combination with ritonavir in adult subjects with mild/moderate COVID-19. Accessed: April 10, 2024.
Obeldesivir (GS-5245)	 Anoshchenko O., et al. 33rd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); Copenhagen, Denmark. Poster 2620. https://shorturl.at/bHJMP. Accessed: April 13-18, 2023. Pitts J., et al. IDWeek; Boston, MA, USA. Poster 539. Efficacy in Multiple SARS-CoV-2 Animal Models Supports Phase 3 Dose Selection for Obeldesivir. https://doi.org/10.1093/ofid/ofad500.608. Accessed: November 23, 2023. Mackman R, et al. J Med Chem. Discovery of GS-5245 (Obeldesivir), an Oral Prodrug of Nucleoside GS-441524 That Exhibits Antiviral Efficacy in SARS-CoV-2-Infected African Green Monkeys. https://doi.org/10.1021/acs.jmedchem.3c00750. Accessed: August 19, 2023. Martinez D., et al. BioRxiv. Efficacy of the oral nucleoside prodrug GS-5245 (Obeldesivir) against SARS-CoV-2 and coronaviruses with pandemic potential. https://doi.org/10.1101/2023.06.27.546784. Accessed: June 28, 2023.
lbuzatrelvir (PF-07817883)	 Tuttle J, et al. <u>Discovery of PF-07817883</u>: A Next Generation Oral Protease Inhibitor for the Treatment of COVID-19. ACS First Time Disclosures (#3933296). Presented August 16, 2023. (Available to American Chemical Society members). ClinicalTrials.gov. A Study to Understand the Effect and Safety of the Study Medicine PF-07817883 in Adults Who Have Symptoms of COVID-19 But Are Not Hospitalized. Accessed: April 10, 2024.
QLS1128	• ClinicalTrials.gov. A Phase 2 Study to Evaluate the Efficacy and Safety of QLS1128 Orally in Symptomatic Participants With Mild to Moderate COVID-19. Accessed: April 10, 2024.
SHEN26	 Chen Q., et al., Org Process Res Dev. Optimized Kilogram-Scale Synthesis and Impurity Identification of SHEN26 (ATV014) for Treating COVID-19. https://doi.org/10.1021/acs.oprd.3c00248. Accessed: November 20, 2023. Zhou Q., et al., Signal Transduction and Targeted Therapy. Preclinical characterization and anti-SARS-CoV-2 efficacy of ATV014: an oral cyclohexanecarboxylate prodrug of 1'-CN-4-aza-7,9-dideazaadenosine C-nucleoside. https://doi.org/10.1038/s41392-023-01310-0. Accessed: January 12, 2023. ClinicalTrials.gov. Accessed: April 10, 2024. ClinicalTrials.gov. Study of SHEN26 Capsule in Patients With Mild to Moderate COVID-19. Accessed: April 10, 2024.

Select References for "Promising" Novel Clinical Antiviral Compounds* (cont'd)

These were cited in addition to information provided by Airfinity.

Compound	Selected References
STI-1558	 Sorrento Therapeutics. OVYDSO STI-1558. Accessed: April 10, 2024. NIH National Library of Medicine. Olgotrelvir (sodium) C22H29N4NaO7S CID 166157330. Accessed: April 10, 2024. Sorrento Therapeutics. Sorrento Releases Positive Results from a Phase 1b Study in China in COVID-19 Patients and is Ready for Pivotal Phase 3 trials with OVYDSO™ (STI-1558), an Oral Mpro Inhibitor as a Standalone Treatment for COVID-19 without the Need for Ritonavir Boosting. Accessed: January 9, 2023. Sorrento Therapeutics. Sorrento Announces the Full Enrollment of the Pivotal Phase 3 Trial with Olgotrelvir (OVYDSOTM) (STI-1558), a Second Generation Oral Mpro Inhibitor, as a Standalone Treatment for COVID-19. Accessed: June 26, 2023. Sorrento Therapeutics. Sorrento Announces Phase 3 Trial Met Primary Endpoint and Key Secondary Endpoint in Mild or Moderate COVID-19 Adult Patients Treated with Ovydso (Olgotrelvir), an Oral Mpro Inhibitor as a Standalone Treatment for COVID-19. Accessed: September 12, 2023.
Mosnodenvir (JNJ-1802)	 Goethals O., et al. Nature. Blocking NS3-NS4B interaction inhibits dengue virus in non-human primates. https://doi.org/10.1038/s41586-023-05790-6. Accessed: April 10, 2024. Ackaert O., et al. Clin Infect Dis. Safety, Tolerability, and Pharmacokinetics of JNJ-1802, a Pan-serotype Dengue Direct Antiviral Small Molecule, in a Phase 1, Double-Blind, Randomized, Dose-Escalation Study in Healthy Volunteers. https://doi.org/10.1093/cid/ciad284. Accessed: April 10, 2024. Janssen Announces Promising Antiviral Activity Against Dengue in a Phase 2a Human Challenge Model. Accessed: October 20, 2023.
GP681	 ClinicalTrials.gov. Evaluation the Safety and Tolerance of GP681 Tablets in Healthy Subjects. Accessed: April 10, 2024. ClinicalTrials.gov. To Assess the Efficacy of GP681 Tablet Versus Placebo in Patients With Acute Uncomplicated Influenza Virus Infection. Accessed: April 10, 2024.
Onradivir (ZSP1273)	 Chen X., et al. Pharmaceuticals (Basel). Preclinical Study of ZSP1273, a Potent Antiviral Inhibitor of Cap Binding to the PB2 Subunit of Influenza A Polymerase. https://doi.org/10.3390/ph16030365. Accessed: April 10, 2024. Hu Y., et al. Expert Opinion on Investigational Drugs. Single and multiple dose pharmacokinetics and safety of ZSP1273, an RNA polymerase PB2 protein inhibitor of the influenza A virus: a phase 1 double-blind study in healthy subjects. https://doi.org/10.1080/13543784.2021.1994944. Accessed: April 10, 2024. Yang Z., et al. Lancet. Safety and efficacy of onradivir in adults with acute uncomplicated influenza A infection: a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. https://doi.org/10.1016/s1473-3099(23)00743-0. Accessed: April 10, 2024. ClinicalTrials.gov. A Study of ZSP1273 Tablets in Patients With Acute Uncomplicated Influenza A. Accessed: April 10, 2024.
V-7404	 Kankam M., et al. American Society for Microbiology. <u>A Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of Single and Multiple Oral Doses of V-7404 in Healthy Adult Volunteers.</u> Accessed: April 10, 2024. NIH GSRS. <u>V-7404 (nih.gov)</u>. Accessed: April 10, 2024.

Interested in engaging with us?

To improve our listing, developers are invited to <u>submit non-confidential</u> <u>information on their compound candidates</u>. In addition, we welcome all feedback through <u>our online portal</u>.

For more information, contact nina@intrepidalliance.org.

- intrepidalliance.org
- in linkedin.com/company/intrepid-alliance

Disclaimer

The INTREPID Alliance is a not-for-profit consortium of innovative biopharmaceutical companies committed to accelerating antiviral research, aiming to ensure that we have a stronger pipeline and are better prepared for future pandemics.

As part of our efforts, the INTREPID Alliance maintains and publishes a centralized list of promising investigational candidate compounds, with the purpose of knowledge-sharing and to support better pandemic preparedness. These compounds have been selected based on objective, scientific criteria, using publicly available sources, and at arm's length from commercial influence of our member companies. See criteria listed in the report "Antiviral Clinical Development Landscape and Promising Clinical Compounds." The designation of certain compounds as promising is based upon currently available information, and exclusively upon an assessment against these criteria. "Promising" is not a promotional claim. Candidate compounds have not been assessed by regulatory authorities to be safe and efficacious for the treatment of disease in humans. Our content is designed to be factual, informative, and non-commercial. It is not designed or intended to advertise or promote any pharmaceutical product or therapy or to advance the commercial interests of any company.

